Skip to main content
Genetics logoLink to Genetics
. 2002 Apr;160(4):1423–1437. doi: 10.1093/genetics/160.4.1423

Protein phosphatase type 1 regulates ion homeostasis in Saccharomyces cerevisiae.

Tara Williams-Hart 1, Xiaolin Wu 1, Kelly Tatchell 1
PMCID: PMC1462070  PMID: 11973298

Abstract

Protein phosphatase type 1 (PP1) is encoded by the essential gene GLC7 in Saccharomyces cerevisiae. glc7-109 (K259A, R260A) has a dominant, hyperglycogen defect and a recessive, ion and drug sensitivity. Surprisingly, the hyperglycogen phenotype is partially retained in null mutants of GAC1, GIP2, and PIG1, which encode potential glycogen-targeting subunits of Glc7. The R260A substitution in GLC7 is responsible for the dominant and recessive traits of glc7-109. Another mutation at this residue, glc7-R260P, confers only salt sensitivity, indicating that the glycogen and salt traits of glc7-109 are due to defects in distinct physiological pathways. The glc7-109 mutant is sensitive to cations, aminoglycosides, and alkaline pH and exhibits increased rates of l-leucine and 3,3'-dihexyloxacarbocyanine iodide uptake, but it is resistant to molar concentrations of sorbitol or KCl, indicating that it has normal osmoregulation. KCl suppresses the ion and drug sensitivities of the glc7-109 mutant. The CsCl sensitivity of this mutant is suppressed by recessive mutations in PMA1, which encodes the essential plasma membrane H(+)ATPase. Together, these results indicate that Glc7 regulates ion homeostasis by controlling ion transport and/or plasma membrane potential, a new role for Glc7 in budding yeast.

Full Text

The Full Text of this article is available as a PDF (349.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allen P. B., Ouimet C. C., Greengard P. Spinophilin, a novel protein phosphatase 1 binding protein localized to dendritic spines. Proc Natl Acad Sci U S A. 1997 Sep 2;94(18):9956–9961. doi: 10.1073/pnas.94.18.9956. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Anderson C., Tatchell K. Hyperactive glycogen synthase mutants of Saccharomyces cerevisiae suppress the glc7-1 protein phosphatase mutant. J Bacteriol. 2001 Feb;183(3):821–829. doi: 10.1128/JB.183.3.821-829.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Andre B. An overview of membrane transport proteins in Saccharomyces cerevisiae. Yeast. 1995 Dec;11(16):1575–1611. doi: 10.1002/yea.320111605. [DOI] [PubMed] [Google Scholar]
  4. Andrews P. D., Stark M. J. Type 1 protein phosphatase is required for maintenance of cell wall integrity, morphogenesis and cell cycle progression in Saccharomyces cerevisiae. J Cell Sci. 2000 Feb;113(Pt 3):507–520. doi: 10.1242/jcs.113.3.507. [DOI] [PubMed] [Google Scholar]
  5. Antebi A., Fink G. R. The yeast Ca(2+)-ATPase homologue, PMR1, is required for normal Golgi function and localizes in a novel Golgi-like distribution. Mol Biol Cell. 1992 Jun;3(6):633–654. doi: 10.1091/mbc.3.6.633. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bailis J. M., Roeder G. S. Pachytene exit controlled by reversal of Mek1-dependent phosphorylation. Cell. 2000 Apr 14;101(2):211–221. doi: 10.1016/S0092-8674(00)80831-4. [DOI] [PubMed] [Google Scholar]
  7. Baker S. H., Frederick D. L., Bloecher A., Tatchell K. Alanine-scanning mutagenesis of protein phosphatase type 1 in the yeast Saccharomyces cerevisiae. Genetics. 1997 Mar;145(3):615–626. doi: 10.1093/genetics/145.3.615. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Ballarin-Denti A., Slayman C. L., Kuroda H. Small lipid-soluble cations are not membrane voltage probes for Neurospora or Saccharomyces. Biochim Biophys Acta. 1994 Feb 23;1190(1):43–56. doi: 10.1016/0005-2736(94)90033-7. [DOI] [PubMed] [Google Scholar]
  9. Bertorello A. M., Aperia A., Walaas S. I., Nairn A. C., Greengard P. Phosphorylation of the catalytic subunit of Na+,K(+)-ATPase inhibits the activity of the enzyme. Proc Natl Acad Sci U S A. 1991 Dec 15;88(24):11359–11362. doi: 10.1073/pnas.88.24.11359. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Bihler H., Gaber R. F., Slayman C. L., Bertl A. The presumed potassium carrier Trk2p in Saccharomyces cerevisiae determines an H+-dependent, K+-independent current. FEBS Lett. 1999 Mar 19;447(1):115–120. doi: 10.1016/s0014-5793(99)00281-1. [DOI] [PubMed] [Google Scholar]
  11. Bihler H., Slayman C. L., Bertl A. NSC1: a novel high-current inward rectifier for cations in the plasma membrane of Saccharomyces cerevisiae. FEBS Lett. 1998 Jul 31;432(1-2):59–64. doi: 10.1016/s0014-5793(98)00832-1. [DOI] [PubMed] [Google Scholar]
  12. Bloecher A., Tatchell K. Defects in Saccharomyces cerevisiae protein phosphatase type I activate the spindle/kinetochore checkpoint. Genes Dev. 1999 Mar 1;13(5):517–522. doi: 10.1101/gad.13.5.517. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  14. Breuder T., Hemenway C. S., Movva N. R., Cardenas M. E., Heitman J. Calcineurin is essential in cyclosporin A- and FK506-sensitive yeast strains. Proc Natl Acad Sci U S A. 1994 Jun 7;91(12):5372–5376. doi: 10.1073/pnas.91.12.5372. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Browning M. D., Huganir R., Greengard P. Protein phosphorylation and neuronal function. J Neurochem. 1985 Jul;45(1):11–23. doi: 10.1111/j.1471-4159.1985.tb05468.x. [DOI] [PubMed] [Google Scholar]
  16. Cannon J. F., Pringle J. R., Fiechter A., Khalil M. Characterization of glycogen-deficient glc mutants of Saccharomyces cerevisiae. Genetics. 1994 Feb;136(2):485–503. doi: 10.1093/genetics/136.2.485. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Capieaux E., Vignais M. L., Sentenac A., Goffeau A. The yeast H+-ATPase gene is controlled by the promoter binding factor TUF. J Biol Chem. 1989 May 5;264(13):7437–7446. [PubMed] [Google Scholar]
  18. Chang A., Slayman C. W. Maturation of the yeast plasma membrane [H+]ATPase involves phosphorylation during intracellular transport. J Cell Biol. 1991 Oct;115(2):289–295. doi: 10.1083/jcb.115.2.289. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Chester V. E. Heritable glycogen-storage deficiency in yeast and its induction by ultra-violet light. J Gen Microbiol. 1968 Apr;51(1):49–56. doi: 10.1099/00221287-51-1-49. [DOI] [PubMed] [Google Scholar]
  20. Cunningham K. W., Fink G. R. Calcineurin inhibits VCX1-dependent H+/Ca2+ exchange and induces Ca2+ ATPases in Saccharomyces cerevisiae. Mol Cell Biol. 1996 May;16(5):2226–2237. doi: 10.1128/mcb.16.5.2226. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Cunningham K. W., Fink G. R. Calcineurin-dependent growth control in Saccharomyces cerevisiae mutants lacking PMC1, a homolog of plasma membrane Ca2+ ATPases. J Cell Biol. 1994 Feb;124(3):351–363. doi: 10.1083/jcb.124.3.351. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Cyert M. S., Thorner J. Regulatory subunit (CNB1 gene product) of yeast Ca2+/calmodulin-dependent phosphoprotein phosphatases is required for adaptation to pheromone. Mol Cell Biol. 1992 Aug;12(8):3460–3469. doi: 10.1128/mcb.12.8.3460. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Dufour J. P., Goffeau A. Solubilization by lysolecithin and purification of the plasma membrane ATPase of the yeast Schizosaccharomyces pombe. J Biol Chem. 1978 Oct 10;253(19):7026–7032. [PubMed] [Google Scholar]
  24. Egloff M. P., Johnson D. F., Moorhead G., Cohen P. T., Cohen P., Barford D. Structural basis for the recognition of regulatory subunits by the catalytic subunit of protein phosphatase 1. EMBO J. 1997 Apr 15;16(8):1876–1887. doi: 10.1093/emboj/16.8.1876. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Estrada E., Agostinis P., Vandenheede J. R., Goris J., Merlevede W., François J., Goffeau A., Ghislain M. Phosphorylation of yeast plasma membrane H+-ATPase by casein kinase I. J Biol Chem. 1996 Dec 13;271(50):32064–32072. doi: 10.1074/jbc.271.50.32064. [DOI] [PubMed] [Google Scholar]
  26. Farcasanu I. C., Hirata D., Tsuchiya E., Nishiyama F., Miyakawa T. Protein phosphatase 2B of Saccharomyces cerevisiae is required for tolerance to manganese, in blocking the entry of ions into the cells. Eur J Biochem. 1995 Sep 15;232(3):712–717. [PubMed] [Google Scholar]
  27. Feng Z. H., Wilson S. E., Peng Z. Y., Schlender K. K., Reimann E. M., Trumbly R. J. The yeast GLC7 gene required for glycogen accumulation encodes a type 1 protein phosphatase. J Biol Chem. 1991 Dec 15;266(35):23796–23801. [PubMed] [Google Scholar]
  28. François J. M., Thompson-Jaeger S., Skroch J., Zellenka U., Spevak W., Tatchell K. GAC1 may encode a regulatory subunit for protein phosphatase type 1 in Saccharomyces cerevisiae. EMBO J. 1992 Jan;11(1):87–96. doi: 10.1002/j.1460-2075.1992.tb05031.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Gaber R. F., Styles C. A., Fink G. R. TRK1 encodes a plasma membrane protein required for high-affinity potassium transport in Saccharomyces cerevisiae. Mol Cell Biol. 1988 Jul;8(7):2848–2859. doi: 10.1128/mcb.8.7.2848. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. García-Arranz M., Maldonado A. M., Mazón M. J., Portillo F. Transcriptional control of yeast plasma membrane H(+)-ATPase by glucose. Cloning and characterization of a new gene involved in this regulation. J Biol Chem. 1994 Jul 8;269(27):18076–18082. [PubMed] [Google Scholar]
  31. Gietz D., St Jean A., Woods R. A., Schiestl R. H. Improved method for high efficiency transformation of intact yeast cells. Nucleic Acids Res. 1992 Mar 25;20(6):1425–1425. doi: 10.1093/nar/20.6.1425. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Goldberg J., Huang H. B., Kwon Y. G., Greengard P., Nairn A. C., Kuriyan J. Three-dimensional structure of the catalytic subunit of protein serine/threonine phosphatase-1. Nature. 1995 Aug 31;376(6543):745–753. doi: 10.1038/376745a0. [DOI] [PubMed] [Google Scholar]
  33. Gong X., Chang A. A mutant plasma membrane ATPase, Pma1-10, is defective in stability at the yeast cell surface. Proc Natl Acad Sci U S A. 2001 Jul 31;98(16):9104–9109. doi: 10.1073/pnas.161282998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Goossens A., de La Fuente N., Forment J., Serrano R., Portillo F. Regulation of yeast H(+)-ATPase by protein kinases belonging to a family dedicated to activation of plasma membrane transporters. Mol Cell Biol. 2000 Oct;20(20):7654–7661. doi: 10.1128/mcb.20.20.7654-7661.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Gradmann D., Hansen U. P., Long W. S., Slayman C. L., Warncke J. Current-voltage relationships for the plasma membrane and its principal electrogenic pump in Neurospora crassa: I. Steady-state conditions. J Membr Biol. 1978 Mar 20;39(4):333–367. doi: 10.1007/BF01869898. [DOI] [PubMed] [Google Scholar]
  36. Greengard P., Nairn A. C., Girault J. A., Ouimet C. C., Snyder G. L., Fisone G., Allen P. B., Fienberg A., Nishi A. The DARPP-32/protein phosphatase-1 cascade: a model for signal integration. Brain Res Brain Res Rev. 1998 May;26(2-3):274–284. doi: 10.1016/s0165-0173(97)00057-x. [DOI] [PubMed] [Google Scholar]
  37. Hardy T. A., Roach P. J. Control of yeast glycogen synthase-2 by COOH-terminal phosphorylation. J Biol Chem. 1993 Nov 15;268(32):23799–23805. [PubMed] [Google Scholar]
  38. Hasper A., Soteropoulos P., Perlin D. S. Modification of the N-terminal polyserine cluster alters stability of the plasma membrane H(+)-ATPase from Saccharomyces cerevisiae. Biochim Biophys Acta. 1999 Aug 20;1420(1-2):214–222. doi: 10.1016/s0005-2736(99)00100-5. [DOI] [PubMed] [Google Scholar]
  39. Hill J. E., Myers A. M., Koerner T. J., Tzagoloff A. Yeast/E. coli shuttle vectors with multiple unique restriction sites. Yeast. 1986 Sep;2(3):163–167. doi: 10.1002/yea.320020304. [DOI] [PubMed] [Google Scholar]
  40. Hisamoto N., Frederick D. L., Sugimoto K., Tatchell K., Matsumoto K. The EGP1 gene may be a positive regulator of protein phosphatase type 1 in the growth control of Saccharomyces cerevisiae. Mol Cell Biol. 1995 Jul;15(7):3767–3776. doi: 10.1128/mcb.15.7.3767. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Ho Yuen, Gruhler Albrecht, Heilbut Adrian, Bader Gary D., Moore Lynda, Adams Sally-Lin, Millar Anna, Taylor Paul, Bennett Keiryn, Boutilier Kelly. Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry. Nature. 2002 Jan 10;415(6868):180–183. doi: 10.1038/415180a. [DOI] [PubMed] [Google Scholar]
  42. Hoffman C. S., Winston F. A ten-minute DNA preparation from yeast efficiently releases autonomous plasmids for transformation of Escherichia coli. Gene. 1987;57(2-3):267–272. doi: 10.1016/0378-1119(87)90131-4. [DOI] [PubMed] [Google Scholar]
  43. Holcomb C. L., Hansen W. J., Etcheverry T., Schekman R. Secretory vesicles externalize the major plasma membrane ATPase in yeast. J Cell Biol. 1988 Mar;106(3):641–648. doi: 10.1083/jcb.106.3.641. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Huang D., Farkas I., Roach P. J. Pho85p, a cyclin-dependent protein kinase, and the Snf1p protein kinase act antagonistically to control glycogen accumulation in Saccharomyces cerevisiae. Mol Cell Biol. 1996 Aug;16(8):4357–4365. doi: 10.1128/mcb.16.8.4357. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Huang D., Moffat J., Wilson W. A., Moore L., Cheng C., Roach P. J., Andrews B. Cyclin partners determine Pho85 protein kinase substrate specificity in vitro and in vivo: control of glycogen biosynthesis by Pcl8 and Pcl10. Mol Cell Biol. 1998 Jun;18(6):3289–3299. doi: 10.1128/mcb.18.6.3289. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Kolarov J., Kulpa J., Baijot M., Goffeau A. Characterization of a protein serine kinase from yeast plasma membrane. J Biol Chem. 1988 Aug 5;263(22):10613–10619. [PubMed] [Google Scholar]
  47. Kotliar N., Stella C. A., Ramos E. H., Mattoon J. R. L-leucine transport systems in Saccharomyces cerevisiae participation of GAP1, S1 and S2 transport systems. Cell Mol Biol (Noisy-le-grand) 1994 Sep;40(6):833–842. [PubMed] [Google Scholar]
  48. Kuno T., Tanaka H., Mukai H., Chang C. D., Hiraga K., Miyakawa T., Tanaka C. cDNA cloning of a calcineurin B homolog in Saccharomyces cerevisiae. Biochem Biophys Res Commun. 1991 Oct 31;180(2):1159–1163. doi: 10.1016/s0006-291x(05)81188-x. [DOI] [PubMed] [Google Scholar]
  49. MacKelvie S. H., Andrews P. D., Stark M. J. The Saccharomyces cerevisiae gene SDS22 encodes a potential regulator of the mitotic function of yeast type 1 protein phosphatase. Mol Cell Biol. 1995 Jul;15(7):3777–3785. doi: 10.1128/mcb.15.7.3777. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. MacMillan L. B., Bass M. A., Cheng N., Howard E. F., Tamura M., Strack S., Wadzinski B. E., Colbran R. J. Brain actin-associated protein phosphatase 1 holoenzymes containing spinophilin, neurabin, and selected catalytic subunit isoforms. J Biol Chem. 1999 Dec 10;274(50):35845–35854. doi: 10.1074/jbc.274.50.35845. [DOI] [PubMed] [Google Scholar]
  51. Madrid R., Gómez M. J., Ramos J., Rodríguez-Navarro A. Ectopic potassium uptake in trk1 trk2 mutants of Saccharomyces cerevisiae correlates with a highly hyperpolarized membrane potential. J Biol Chem. 1998 Jun 12;273(24):14838–14844. doi: 10.1074/jbc.273.24.14838. [DOI] [PubMed] [Google Scholar]
  52. Matheos D. P., Kingsbury T. J., Ahsan U. S., Cunningham K. W. Tcn1p/Crz1p, a calcineurin-dependent transcription factor that differentially regulates gene expression in Saccharomyces cerevisiae. Genes Dev. 1997 Dec 15;11(24):3445–3458. doi: 10.1101/gad.11.24.3445. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. McCusker J. H., Haber J. E. Cycloheximide-resistant temperature-sensitive lethal mutations of Saccharomyces cerevisiae. Genetics. 1988 Jun;119(2):303–315. doi: 10.1093/genetics/119.2.303. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. McCusker J. H., Perlin D. S., Haber J. E. Pleiotropic plasma membrane ATPase mutations of Saccharomyces cerevisiae. Mol Cell Biol. 1987 Nov;7(11):4082–4088. doi: 10.1128/mcb.7.11.4082. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Mendoza I., Rubio F., Rodriguez-Navarro A., Pardo J. M. The protein phosphatase calcineurin is essential for NaCl tolerance of Saccharomyces cerevisiae. J Biol Chem. 1994 Mar 25;269(12):8792–8796. [PubMed] [Google Scholar]
  56. Mulet J. M., Leube M. P., Kron S. J., Rios G., Fink G. R., Serrano R. A novel mechanism of ion homeostasis and salt tolerance in yeast: the Hal4 and Hal5 protein kinases modulate the Trk1-Trk2 potassium transporter. Mol Cell Biol. 1999 May;19(5):3328–3337. doi: 10.1128/mcb.19.5.3328. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Mulkey R. M., Endo S., Shenolikar S., Malenka R. C. Involvement of a calcineurin/inhibitor-1 phosphatase cascade in hippocampal long-term depression. Nature. 1994 Jun 9;369(6480):486–488. doi: 10.1038/369486a0. [DOI] [PubMed] [Google Scholar]
  58. Nakamura T., Liu Y., Hirata D., Namba H., Harada S., Hirokawa T., Miyakawa T. Protein phosphatase type 2B (calcineurin)-mediated, FK506-sensitive regulation of intracellular ions in yeast is an important determinant for adaptation to high salt stress conditions. EMBO J. 1993 Nov;12(11):4063–4071. doi: 10.1002/j.1460-2075.1993.tb06090.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Norbeck J., Blomberg A. Amino acid uptake is strongly affected during exponential growth of Saccharomyces cerevisiae in 0.7 M NaCl medium. FEMS Microbiol Lett. 1998 Jan 1;158(1):121–126. doi: 10.1111/j.1574-6968.1998.tb12810.x. [DOI] [PubMed] [Google Scholar]
  60. Novoa I., Zeng H., Harding H. P., Ron D. Feedback inhibition of the unfolded protein response by GADD34-mediated dephosphorylation of eIF2alpha. J Cell Biol. 2001 May 28;153(5):1011–1022. doi: 10.1083/jcb.153.5.1011. [DOI] [PMC free article] [PubMed] [Google Scholar]
  61. Peters C., Andrews P. D., Stark M. J., Cesaro-Tadic S., Glatz A., Podtelejnikov A., Mann M., Mayer A. Control of the terminal step of intracellular membrane fusion by protein phosphatase 1. Science. 1999 Aug 13;285(5430):1084–1087. doi: 10.1126/science.285.5430.1084. [DOI] [PubMed] [Google Scholar]
  62. Portillo F., Eraso P., Serrano R. Analysis of the regulatory domain of yeast plasma membrane H+-ATPase by directed mutagenesis and intragenic suppression. FEBS Lett. 1991 Aug 5;287(1-2):71–74. doi: 10.1016/0014-5793(91)80018-x. [DOI] [PubMed] [Google Scholar]
  63. Posas F., Camps M., Ariño J. The PPZ protein phosphatases are important determinants of salt tolerance in yeast cells. J Biol Chem. 1995 Jun 2;270(22):13036–13041. doi: 10.1074/jbc.270.22.13036. [DOI] [PubMed] [Google Scholar]
  64. Ramaswamy N. T., Li L., Khalil M., Cannon J. F. Regulation of yeast glycogen metabolism and sporulation by Glc7p protein phosphatase. Genetics. 1998 May;149(1):57–72. doi: 10.1093/genetics/149.1.57. [DOI] [PMC free article] [PubMed] [Google Scholar]
  65. Rao R., Slayman C. W. Mutagenesis of conserved residues in the phosphorylation domain of the yeast plasma membrane H(+)-ATPase. Effects on structure and function. J Biol Chem. 1993 Mar 25;268(9):6708–6713. [PubMed] [Google Scholar]
  66. Rhodes N., Company M., Errede B. A yeast-Escherichia coli shuttle vector containing the M13 origin of replication. Plasmid. 1990 Mar;23(2):159–162. doi: 10.1016/0147-619x(90)90036-c. [DOI] [PubMed] [Google Scholar]
  67. Rose M. D., Novick P., Thomas J. H., Botstein D., Fink G. R. A Saccharomyces cerevisiae genomic plasmid bank based on a centromere-containing shuttle vector. Gene. 1987;60(2-3):237–243. doi: 10.1016/0378-1119(87)90232-0. [DOI] [PubMed] [Google Scholar]
  68. Rudolph H. K., Antebi A., Fink G. R., Buckley C. M., Dorman T. E., LeVitre J., Davidow L. S., Mao J. I., Moir D. T. The yeast secretory pathway is perturbed by mutations in PMR1, a member of a Ca2+ ATPase family. Cell. 1989 Jul 14;58(1):133–145. doi: 10.1016/0092-8674(89)90410-8. [DOI] [PubMed] [Google Scholar]
  69. Sassoon I., Severin F. F., Andrews P. D., Taba M. R., Kaplan K. B., Ashford A. J., Stark M. J., Sorger P. K., Hyman A. A. Regulation of Saccharomyces cerevisiae kinetochores by the type 1 phosphatase Glc7p. Genes Dev. 1999 Mar 1;13(5):545–555. doi: 10.1101/gad.13.5.545. [DOI] [PMC free article] [PubMed] [Google Scholar]
  70. Serrano R., Montesinos C., Roldán M., Garrido G., Ferguson C., Leonard K., Monk B. C., Perlin D. S., Weiler E. W. Domains of yeast plasma membrane and ATPase-associated glycoprotein. Biochim Biophys Acta. 1991 Feb 25;1062(2):157–164. doi: 10.1016/0005-2736(91)90387-n. [DOI] [PubMed] [Google Scholar]
  71. Serrano R., Villalba J. M., Palmgren M. G., Portillo F., Parets-Soler A., Roldan M., Ferguson C., Montesinos C. Studies of the plasma membrane H(+)-ATPase of yeast and plants. Biochem Soc Trans. 1992 Aug;20(3):562–566. doi: 10.1042/bst0200562. [DOI] [PubMed] [Google Scholar]
  72. Seto-Young D., Perlin D. S. Effect of membrane voltage on the plasma membrane H(+)-ATPase of Saccharomyces cerevisiae. J Biol Chem. 1991 Jan 25;266(3):1383–1389. [PubMed] [Google Scholar]
  73. Shenolikar S., Nairn A. C. Protein phosphatases: recent progress. Adv Second Messenger Phosphoprotein Res. 1991;23:1–121. [PubMed] [Google Scholar]
  74. Shenolikar S. Protein serine/threonine phosphatases--new avenues for cell regulation. Annu Rev Cell Biol. 1994;10:55–86. doi: 10.1146/annurev.cb.10.110194.000415. [DOI] [PubMed] [Google Scholar]
  75. Sikorski R. S., Hieter P. A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics. 1989 May;122(1):19–27. doi: 10.1093/genetics/122.1.19. [DOI] [PMC free article] [PubMed] [Google Scholar]
  76. Slayman C. L. Electrical properties of Neurospora crassa. Effects of external cations on the intracellular potential. J Gen Physiol. 1965 Sep;49(1):69–92. doi: 10.1085/jgp.49.1.69. [DOI] [PMC free article] [PubMed] [Google Scholar]
  77. Slayman C. L. Electrical properties of Neurospora crassa. Respiration and the intracellular potential. J Gen Physiol. 1965 Sep;49(1):93–116. doi: 10.1085/jgp.49.1.93. [DOI] [PMC free article] [PubMed] [Google Scholar]
  78. Slayman C. L., Long W. S., Lu C. Y. The relationship between ATP and an electrogenic pump in the plasma membrane of Neurospora crassa. J Membr Biol. 1973;14(4):305–338. doi: 10.1007/BF01868083. [DOI] [PubMed] [Google Scholar]
  79. Smith F. D., Oxford G. S., Milgram S. L. Association of the D2 dopamine receptor third cytoplasmic loop with spinophilin, a protein phosphatase-1-interacting protein. J Biol Chem. 1999 Jul 9;274(28):19894–19900. doi: 10.1074/jbc.274.28.19894. [DOI] [PubMed] [Google Scholar]
  80. Stathopoulos-Gerontides A., Guo J. J., Cyert M. S. Yeast calcineurin regulates nuclear localization of the Crz1p transcription factor through dephosphorylation. Genes Dev. 1999 Apr 1;13(7):798–803. doi: 10.1101/gad.13.7.798. [DOI] [PMC free article] [PubMed] [Google Scholar]
  81. Stathopoulos A. M., Cyert M. S. Calcineurin acts through the CRZ1/TCN1-encoded transcription factor to regulate gene expression in yeast. Genes Dev. 1997 Dec 15;11(24):3432–3444. doi: 10.1101/gad.11.24.3432. [DOI] [PMC free article] [PubMed] [Google Scholar]
  82. Stuart J. S., Frederick D. L., Varner C. M., Tatchell K. The mutant type 1 protein phosphatase encoded by glc7-1 from Saccharomyces cerevisiae fails to interact productively with the GAC1-encoded regulatory subunit. Mol Cell Biol. 1994 Feb;14(2):896–905. doi: 10.1128/mcb.14.2.896. [DOI] [PMC free article] [PubMed] [Google Scholar]
  83. Timblin B. K., Tatchell K., Bergman L. W. Deletion of the gene encoding the cyclin-dependent protein kinase Pho85 alters glycogen metabolism in Saccharomyces cerevisiae. Genetics. 1996 May;143(1):57–66. doi: 10.1093/genetics/143.1.57. [DOI] [PMC free article] [PubMed] [Google Scholar]
  84. Tu J., Carlson M. REG1 binds to protein phosphatase type 1 and regulates glucose repression in Saccharomyces cerevisiae. EMBO J. 1995 Dec 1;14(23):5939–5946. doi: 10.1002/j.1460-2075.1995.tb00282.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  85. Tu J., Song W., Carlson M. Protein phosphatase type 1 interacts with proteins required for meiosis and other cellular processes in Saccharomyces cerevisiae. Mol Cell Biol. 1996 Aug;16(8):4199–4206. doi: 10.1128/mcb.16.8.4199. [DOI] [PMC free article] [PubMed] [Google Scholar]
  86. Venturi G. M., Bloecher A., Williams-Hart T., Tatchell K. Genetic interactions between GLC7, PPZ1 and PPZ2 in saccharomyces cerevisiae. Genetics. 2000 May;155(1):69–83. doi: 10.1093/genetics/155.1.69. [DOI] [PMC free article] [PubMed] [Google Scholar]
  87. Vidal M., Buckley A. M., Hilger F., Gaber R. F. Direct selection for mutants with increased K+ transport in Saccharomyces cerevisiae. Genetics. 1990 Jun;125(2):313–320. doi: 10.1093/genetics/125.2.313. [DOI] [PMC free article] [PubMed] [Google Scholar]
  88. Villafranca J. E., Kissinger C. R., Parge H. E. Protein serine/threonine phosphatases. Curr Opin Biotechnol. 1996 Aug;7(4):397–402. doi: 10.1016/s0958-1669(96)80114-5. [DOI] [PubMed] [Google Scholar]
  89. Wang Z., Wilson W. A., Fujino M. A., Roach P. J. The yeast cyclins Pc16p and Pc17p are involved in the control of glycogen storage by the cyclin-dependent protein kinase Pho85p. FEBS Lett. 2001 Oct 12;506(3):277–280. doi: 10.1016/s0014-5793(01)02914-3. [DOI] [PubMed] [Google Scholar]
  90. Withee J. L., Sen R., Cyert M. S. Ion tolerance of Saccharomyces cerevisiae lacking the Ca2+/CaM-dependent phosphatase (calcineurin) is improved by mutations in URE2 or PMA1. Genetics. 1998 Jun;149(2):865–878. doi: 10.1093/genetics/149.2.865. [DOI] [PMC free article] [PubMed] [Google Scholar]
  91. Wu X., Hart H., Cheng C., Roach P. J., Tatchell K. Characterization of Gac1p, a regulatory subunit of protein phosphatase type I involved in glycogen accumulation in Saccharomyces cerevisiae. Mol Genet Genomics. 2001 Jun;265(4):622–635. doi: 10.1007/s004380100455. [DOI] [PubMed] [Google Scholar]
  92. Wu X., Tatchell K. Mutations in yeast protein phosphatase type 1 that affect targeting subunit binding. Biochemistry. 2001 Jun 26;40(25):7410–7420. doi: 10.1021/bi002796k. [DOI] [PubMed] [Google Scholar]
  93. van der Rest M. E., Kamminga A. H., Nakano A., Anraku Y., Poolman B., Konings W. N. The plasma membrane of Saccharomyces cerevisiae: structure, function, and biogenesis. Microbiol Rev. 1995 Jun;59(2):304–322. doi: 10.1128/mr.59.2.304-322.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES