Abstract
Self-fertilizing species often harbor less genetic variation than cross-fertilizing species, and at least four different models have been proposed to explain this trend. To investigate further the relationship between mating system and genetic variation, levels of DNA sequence polymorphism were compared among three closely related species in the genus Caenorhabditis: two self-fertilizing species, Caenorhabditis elegans and C. briggsae, and one cross-fertilizing species, C. remanei. As expected, estimates of silent site nucleotide diversity were lower in the two self-fertilizing species. For the mitochondrial genome, diversity in the selfing species averaged 42% of diversity in C. remanei. Interestingly, the reduction in genetic variation was much greater for the nuclear than for the mitochondrial genome. For two nuclear genes, diversity in the selfing species averaged 6 and 13% of diversity in C. remanei. We argue that either population bottlenecks or the repeated action of natural selection, coupled with high levels of selfing, are likely to explain the observed reductions in species-wide genetic diversity.
Full Text
The Full Text of this article is available as a PDF (114.9 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aguade M., Miyashita N., Langley C. H. Reduced variation in the yellow-achaete-scute region in natural populations of Drosophila melanogaster. Genetics. 1989 Jul;122(3):607–615. doi: 10.1093/genetics/122.3.607. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Aquadro C. F. Insights into the evolutionary process from patterns of DNA sequence variability. Curr Opin Genet Dev. 1997 Dec;7(6):835–840. doi: 10.1016/s0959-437x(97)80048-2. [DOI] [PubMed] [Google Scholar]
- Austin J., Kimble J. Transcript analysis of glp-1 and lin-12, homologous genes required for cell interactions during development of C. elegans. Cell. 1989 Aug 11;58(3):565–571. doi: 10.1016/0092-8674(89)90437-6. [DOI] [PubMed] [Google Scholar]
- Awadalla P., Ritland K. Microsatellite variation and evolution in the Mimulus guttatus species complex with contrasting mating systems. Mol Biol Evol. 1997 Oct;14(10):1023–1034. doi: 10.1093/oxfordjournals.molbev.a025708. [DOI] [PubMed] [Google Scholar]
- Barnes T. M., Kohara Y., Coulson A., Hekimi S. Meiotic recombination, noncoding DNA and genomic organization in Caenorhabditis elegans. Genetics. 1995 Sep;141(1):159–179. doi: 10.1093/genetics/141.1.159. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Baudry E., Kerdelhué C., Innan H., Stephan W. Species and recombination effects on DNA variability in the tomato genus. Genetics. 2001 Aug;158(4):1725–1735. doi: 10.1093/genetics/158.4.1725. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Begun D. J., Aquadro C. F. Levels of naturally occurring DNA polymorphism correlate with recombination rates in D. melanogaster. Nature. 1992 Apr 9;356(6369):519–520. doi: 10.1038/356519a0. [DOI] [PubMed] [Google Scholar]
- Begun D. J., Aquadro C. F. Molecular population genetics of the distal portion of the X chromosome in Drosophila: evidence for genetic hitchhiking of the yellow-achaete region. Genetics. 1991 Dec;129(4):1147–1158. doi: 10.1093/genetics/129.4.1147. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bergelson J., Stahl E., Dudek S., Kreitman M. Genetic variation within and among populations of Arabidopsis thaliana. Genetics. 1998 Mar;148(3):1311–1323. doi: 10.1093/genetics/148.3.1311. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Berry A. J., Ajioka J. W., Kreitman M. Lack of polymorphism on the Drosophila fourth chromosome resulting from selection. Genetics. 1991 Dec;129(4):1111–1117. doi: 10.1093/genetics/129.4.1111. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Birky C. W., Jr, Maruyama T., Fuerst P. An approach to population and evolutionary genetic theory for genes in mitochondria and chloroplasts, and some results. Genetics. 1983 Mar;103(3):513–527. doi: 10.1093/genetics/103.3.513. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Birky C. W., Jr Transmission genetics of mitochondria and chloroplasts. Annu Rev Genet. 1978;12:471–512. doi: 10.1146/annurev.ge.12.120178.002351. [DOI] [PubMed] [Google Scholar]
- Braverman J. M., Hudson R. R., Kaplan N. L., Langley C. H., Stephan W. The hitchhiking effect on the site frequency spectrum of DNA polymorphisms. Genetics. 1995 Jun;140(2):783–796. doi: 10.1093/genetics/140.2.783. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Charlesworth B., Morgan M. T., Charlesworth D. The effect of deleterious mutations on neutral molecular variation. Genetics. 1993 Aug;134(4):1289–1303. doi: 10.1093/genetics/134.4.1289. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Charlesworth B., Nordborg M., Charlesworth D. The effects of local selection, balanced polymorphism and background selection on equilibrium patterns of genetic diversity in subdivided populations. Genet Res. 1997 Oct;70(2):155–174. doi: 10.1017/s0016672397002954. [DOI] [PubMed] [Google Scholar]
- Charlesworth B., Nordborg M., Charlesworth D. The effects of local selection, balanced polymorphism and background selection on equilibrium patterns of genetic diversity in subdivided populations. Genet Res. 1997 Oct;70(2):155–174. doi: 10.1017/s0016672397002954. [DOI] [PubMed] [Google Scholar]
- Charlesworth D., Charlesworth B. Sequence variation: looking for effects of genetic linkage. Curr Biol. 1998 Sep 10;8(18):R658–R661. doi: 10.1016/s0960-9822(07)00416-2. [DOI] [PubMed] [Google Scholar]
- Charlesworth D., Yang Z. Allozyme diversity in Leavenworthia populations with different inbreeding levels. Heredity (Edinb) 1998 Oct;81(Pt 4):453–461. doi: 10.1046/j.1365-2540.1998.00415.x. [DOI] [PubMed] [Google Scholar]
- Cummings M. P., Clegg M. T. Nucleotide sequence diversity at the alcohol dehydrogenase 1 locus in wild barley (Hordeum vulgare ssp. spontaneum): an evaluation of the background selection hypothesis. Proc Natl Acad Sci U S A. 1998 May 12;95(10):5637–5642. doi: 10.1073/pnas.95.10.5637. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Depaulis F., Veuille M. Neutrality tests based on the distribution of haplotypes under an infinite-site model. Mol Biol Evol. 1998 Dec;15(12):1788–1790. doi: 10.1093/oxfordjournals.molbev.a025905. [DOI] [PubMed] [Google Scholar]
- Filatov D. A., Charlesworth D. DNA polymorphism, haplotype structure and balancing selection in the Leavenworthia PgiC locus. Genetics. 1999 Nov;153(3):1423–1434. doi: 10.1093/genetics/153.3.1423. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Filatov D. A., Monéger F., Negrutiu I., Charlesworth D. Low variability in a Y-linked plant gene and its implications for Y-chromosome evolution. Nature. 2000 Mar 23;404(6776):388–390. doi: 10.1038/35006057. [DOI] [PubMed] [Google Scholar]
- Fitch D. H., Bugaj-Gaweda B., Emmons S. W. 18S ribosomal RNA gene phylogeny for some Rhabditidae related to Caenorhabditis. Mol Biol Evol. 1995 Mar;12(2):346–358. doi: 10.1093/oxfordjournals.molbev.a040207. [DOI] [PubMed] [Google Scholar]
- Fu Y. X. Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics. 1997 Oct;147(2):915–925. doi: 10.1093/genetics/147.2.915. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Haag E. S., Kimble J. Regulatory elements required for development of caenorhabditis elegans hermaphrodites are conserved in the tra-2 homologue of C. remanei, a male/female sister species. Genetics. 2000 May;155(1):105–116. doi: 10.1093/genetics/155.1.105. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hudson R. R., Kaplan N. L. Deleterious background selection with recombination. Genetics. 1995 Dec;141(4):1605–1617. doi: 10.1093/genetics/141.4.1605. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Johnson A. E., Nursten H. E., Self R. Aromatic hydrocarbons in foodstuffs and related materials. Chem Ind. 1969 Jan 4;1:10–12. [PubMed] [Google Scholar]
- Kimura M. Theoretical foundation of population genetics at the molecular level. Theor Popul Biol. 1971 Jun;2(2):174–208. doi: 10.1016/0040-5809(71)90014-1. [DOI] [PubMed] [Google Scholar]
- Koch R., van Luenen H. G., van der Horst M., Thijssen K. L., Plasterk R. H. Single nucleotide polymorphisms in wild isolates of Caenorhabditis elegans. Genome Res. 2000 Nov;10(11):1690–1696. doi: 10.1101/gr.gr-1471r. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kraft T., Säll T., Magnusson-Rading I., Nilsson N. O., Halldén C. Positive correlation between recombination rates and levels of genetic variation in natural populations of sea beet (Beta vulgaris subsp. maritima). Genetics. 1998 Nov;150(3):1239–1244. doi: 10.1093/genetics/150.3.1239. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kuwabara P. E., Kimble J. A predicted membrane protein, TRA-2A, directs hermaphrodite development in Caenorhabditis elegans. Development. 1995 Sep;121(9):2995–3004. doi: 10.1242/dev.121.9.2995. [DOI] [PubMed] [Google Scholar]
- Liu F., Charlesworth D., Kreitman M. The effect of mating system differences on nucleotide diversity at the phosphoglucose isomerase locus in the plant genus Leavenworthia. Genetics. 1999 Jan;151(1):343–357. doi: 10.1093/genetics/151.1.343. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Liu F., Zhang L., Charlesworth D. Genetic diversity in Leavenworthia populations with different inbreeding levels. Proc Biol Sci. 1998 Feb 22;265(1393):293–301. doi: 10.1098/rspb.1998.0295. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nachman M. W., Bauer V. L., Crowell S. L., Aquadro C. F. DNA variability and recombination rates at X-linked loci in humans. Genetics. 1998 Nov;150(3):1133–1141. doi: 10.1093/genetics/150.3.1133. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nachman M. W. Patterns of DNA variability at X-linked loci in Mus domesticus. Genetics. 1997 Nov;147(3):1303–1316. doi: 10.1093/genetics/147.3.1303. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nachman M. W. Single nucleotide polymorphisms and recombination rate in humans. Trends Genet. 2001 Sep;17(9):481–485. doi: 10.1016/s0168-9525(01)02409-x. [DOI] [PubMed] [Google Scholar]
- Nordborg M. Linkage disequilibrium, gene trees and selfing: an ancestral recombination graph with partial self-fertilization. Genetics. 2000 Feb;154(2):923–929. doi: 10.1093/genetics/154.2.923. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Palopoli M. F., Wu C. I. Rapid evolution of a coadapted gene complex: evidence from the Segregation Distorter (SD) system of meiotic drive in Drosophila melanogaster. Genetics. 1996 Aug;143(4):1675–1688. doi: 10.1093/genetics/143.4.1675. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pollak E. On the theory of partially inbreeding finite populations. I. Partial selfing. Genetics. 1987 Oct;117(2):353–360. doi: 10.1093/genetics/117.2.353. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rozas J., Rozas R. DnaSP version 3: an integrated program for molecular population genetics and molecular evolution analysis. Bioinformatics. 1999 Feb;15(2):174–175. doi: 10.1093/bioinformatics/15.2.174. [DOI] [PubMed] [Google Scholar]
- Rudel D., Kimble J. Conservation of glp-1 regulation and function in nematodes. Genetics. 2001 Feb;157(2):639–654. doi: 10.1093/genetics/157.2.639. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Saiki R. K., Gelfand D. H., Stoffel S., Scharf S. J., Higuchi R., Horn G. T., Mullis K. B., Erlich H. A. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science. 1988 Jan 29;239(4839):487–491. doi: 10.1126/science.2448875. [DOI] [PubMed] [Google Scholar]
- Savolainen O., Langley C. H., Lazzaro B. P., Fr H. Contrasting patterns of nucleotide polymorphism at the alcohol dehydrogenase locus in the outcrossing Arabidopsis lyrata and the selfing Arabidopsis thaliana. Mol Biol Evol. 2000 Apr;17(4):645–655. doi: 10.1093/oxfordjournals.molbev.a026343. [DOI] [PubMed] [Google Scholar]
- Schoen D. J., Brown A. H. Intraspecific variation in population gene diversity and effective population size correlates with the mating system in plants. Proc Natl Acad Sci U S A. 1991 May 15;88(10):4494–4497. doi: 10.1073/pnas.88.10.4494. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Singson A., Hill K. L., L'Hernault S. W. Sperm competition in the absence of fertilization in Caenorhabditis elegans. Genetics. 1999 May;152(1):201–208. doi: 10.1093/genetics/152.1.201. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Singson A., Mercer K. B., L'Hernault S. W. The C. elegans spe-9 gene encodes a sperm transmembrane protein that contains EGF-like repeats and is required for fertilization. Cell. 1998 Apr 3;93(1):71–79. doi: 10.1016/s0092-8674(00)81147-2. [DOI] [PubMed] [Google Scholar]
- Smith J. M., Haigh J. The hitch-hiking effect of a favourable gene. Genet Res. 1974 Feb;23(1):23–35. [PubMed] [Google Scholar]
- Stein L., Sternberg P., Durbin R., Thierry-Mieg J., Spieth J. WormBase: network access to the genome and biology of Caenorhabditis elegans. Nucleic Acids Res. 2001 Jan 1;29(1):82–86. doi: 10.1093/nar/29.1.82. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stephan W., Langley C. H. DNA polymorphism in lycopersicon and crossing-over per physical length. Genetics. 1998 Dec;150(4):1585–1593. doi: 10.1093/genetics/150.4.1585. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stephan W., Langley C. H. Molecular genetic variation in the centromeric region of the X chromosome in three Drosophila ananassae populations. I. Contrasts between the vermilion and forked loci. Genetics. 1989 Jan;121(1):89–99. doi: 10.1093/genetics/121.1.89. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tajima F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics. 1989 Nov;123(3):585–595. doi: 10.1093/genetics/123.3.585. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thomas W. K., Wilson A. C. Mode and tempo of molecular evolution in the nematode caenorhabditis: cytochrome oxidase II and calmodulin sequences. Genetics. 1991 Jun;128(2):269–279. doi: 10.1093/genetics/128.2.269. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thompson J. D., Higgins D. G., Gibson T. J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994 Nov 11;22(22):4673–4680. doi: 10.1093/nar/22.22.4673. [DOI] [PMC free article] [PubMed] [Google Scholar]
- van Treuren R., Kuittinen H., Kärkkäinen K., Baena-Gonzalez E., Savolainen O. Evolution of microsatellites in Arabis petraea and Arabis lyrata, outcrossing relatives of Arabidopsis thaliana. Mol Biol Evol. 1997 Mar;14(3):220–229. doi: 10.1093/oxfordjournals.molbev.a025758. [DOI] [PubMed] [Google Scholar]
- van Treuren R., Kuittinen H., Kärkkäinen K., Baena-Gonzalez E., Savolainen O. Evolution of microsatellites in Arabis petraea and Arabis lyrata, outcrossing relatives of Arabidopsis thaliana. Mol Biol Evol. 1997 Mar;14(3):220–229. doi: 10.1093/oxfordjournals.molbev.a025758. [DOI] [PubMed] [Google Scholar]