Skip to main content
Genetics logoLink to Genetics
. 2002 May;161(1):109–119. doi: 10.1093/genetics/161.1.109

A Caenorhabditis elegans pheromone antagonizes volatile anesthetic action through a go-coupled pathway.

Bruno van Swinderen 1, Laura B Metz 1, Laynie D Shebester 1, C Michael Crowder 1
PMCID: PMC1462086  PMID: 12019227

Abstract

Volatile anesthetics (VAs) disrupt nervous system function by an ill-defined mechanism with no known specific antagonists. During the course of characterizing the response of the nematode C. elegans to VAs, we discovered that a C. elegans pheromone antagonizes the VA halothane. Acute exposure to pheromone rendered wild-type C. elegans resistant to clinical concentrations of halothane, increasing the EC(50) from 0.43 +/- 0.03 to 0.90 +/- 0.02. C. elegans mutants that disrupt the function of sensory neurons required for the action of the previously characterized dauer pheromone blocked pheromone-induced resistance (Pir) to halothane. Pheromone preparations from loss-of-function mutants of daf-22, a gene required for dauer pheromone production, lacked the halothane-resistance activity, suggesting that dauer and Pir pheromone are identical. However, the pathways for pheromone's effects on dauer formation and VA action were not identical. Not all mutations that alter dauer formation affected the Pir phenotype. Further, mutations in genes not known to be involved in dauer formation completely blocked Pir, including those altering signaling through the G proteins Goalpha and Gqalpha. A model in which sensory neurons transduce the pheromone activity through antagonistic Go and Gq pathways, modulating VA action against neurotransmitter release machinery, is proposed.

Full Text

The Full Text of this article is available as a PDF (130.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Albert P. S., Brown S. J., Riddle D. L. Sensory control of dauer larva formation in Caenorhabditis elegans. J Comp Neurol. 1981 May 20;198(3):435–451. doi: 10.1002/cne.901980305. [DOI] [PubMed] [Google Scholar]
  2. Bamber B. A., Beg A. A., Twyman R. E., Jorgensen E. M. The Caenorhabditis elegans unc-49 locus encodes multiple subunits of a heteromultimeric GABA receptor. J Neurosci. 1999 Jul 1;19(13):5348–5359. doi: 10.1523/JNEUROSCI.19-13-05348.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bargmann C. I., Horvitz H. R. Control of larval development by chemosensory neurons in Caenorhabditis elegans. Science. 1991 Mar 8;251(4998):1243–1246. doi: 10.1126/science.2006412. [DOI] [PubMed] [Google Scholar]
  4. Birnby D. A., Link E. M., Vowels J. J., Tian H., Colacurcio P. L., Thomas J. H. A transmembrane guanylyl cyclase (DAF-11) and Hsp90 (DAF-21) regulate a common set of chemosensory behaviors in caenorhabditis elegans. Genetics. 2000 May;155(1):85–104. doi: 10.1093/genetics/155.1.85. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chalfie M., Sulston J. E., White J. G., Southgate E., Thomson J. N., Brenner S. The neural circuit for touch sensitivity in Caenorhabditis elegans. J Neurosci. 1985 Apr;5(4):956–964. doi: 10.1523/JNEUROSCI.05-04-00956.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Crowder C. M., Shebester L. D., Schedl T. Behavioral effects of volatile anesthetics in Caenorhabditis elegans. Anesthesiology. 1996 Oct;85(4):901–912. doi: 10.1097/00000542-199610000-00027. [DOI] [PubMed] [Google Scholar]
  7. Davis K., Davey J. G-protein-coupled receptors for peptide hormones in yeast. Biochem Soc Trans. 1997 Aug;25(3):1015–1021. doi: 10.1042/bst0251015. [DOI] [PubMed] [Google Scholar]
  8. Franks N. P., Lieb W. R. Molecular and cellular mechanisms of general anaesthesia. Nature. 1994 Feb 17;367(6464):607–614. doi: 10.1038/367607a0. [DOI] [PubMed] [Google Scholar]
  9. Gamo S., Dodo K., Matakatsu H., Tanaka Y. Molecular genetical analysis of Drosophila ether sensitive mutants. Toxicol Lett. 1998 Nov 23;100-101:329–337. doi: 10.1016/s0378-4274(98)00203-3. [DOI] [PubMed] [Google Scholar]
  10. Golden J. W., Riddle D. L. A gene affecting production of the Caenorhabditis elegans dauer-inducing pheromone. Mol Gen Genet. 1985;198(3):534–536. doi: 10.1007/BF00332953. [DOI] [PubMed] [Google Scholar]
  11. Hajdu-Cronin Y. M., Chen W. J., Patikoglou G., Koelle M. R., Sternberg P. W. Antagonism between G(o)alpha and G(q)alpha in Caenorhabditis elegans: the RGS protein EAT-16 is necessary for G(o)alpha signaling and regulates G(q)alpha activity. Genes Dev. 1999 Jul 15;13(14):1780–1793. doi: 10.1101/gad.13.14.1780. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Jenkins A., Greenblatt E. P., Faulkner H. J., Bertaccini E., Light A., Lin A., Andreasen A., Viner A., Trudell J. R., Harrison N. L. Evidence for a common binding cavity for three general anesthetics within the GABAA receptor. J Neurosci. 2001 Mar 15;21(6):RC136–RC136. doi: 10.1523/JNEUROSCI.21-06-j0002.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Jones M. V., Brooks P. A., Harrison N. L. Enhancement of gamma-aminobutyric acid-activated Cl- currents in cultured rat hippocampal neurones by three volatile anaesthetics. J Physiol. 1992 Apr;449:279–293. doi: 10.1113/jphysiol.1992.sp019086. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Koelle M. R., Horvitz H. R. EGL-10 regulates G protein signaling in the C. elegans nervous system and shares a conserved domain with many mammalian proteins. Cell. 1996 Jan 12;84(1):115–125. doi: 10.1016/s0092-8674(00)80998-8. [DOI] [PubMed] [Google Scholar]
  15. Koltchine V. V., Finn S. E., Jenkins A., Nikolaeva N., Lin A., Harrison N. L. Agonist gating and isoflurane potentiation in the human gamma-aminobutyric acid type A receptor determined by the volume of a second transmembrane domain residue. Mol Pharmacol. 1999 Nov;56(5):1087–1093. doi: 10.1124/mol.56.5.1087. [DOI] [PubMed] [Google Scholar]
  16. Krishnan K. S., Nash H. A. A genetic study of the anesthetic response: mutants of Drosophila melanogaster altered in sensitivity to halothane. Proc Natl Acad Sci U S A. 1990 Nov;87(21):8632–8636. doi: 10.1073/pnas.87.21.8632. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kullmann D. M., Martin R. L., Redman S. J. Reduction by general anaesthetics of group Ia excitatory postsynaptic potentials and currents in the cat spinal cord. J Physiol. 1989 May;412:277–296. doi: 10.1113/jphysiol.1989.sp017615. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Lackner M. R., Nurrish S. J., Kaplan J. M. Facilitation of synaptic transmission by EGL-30 Gqalpha and EGL-8 PLCbeta: DAG binding to UNC-13 is required to stimulate acetylcholine release. Neuron. 1999 Oct;24(2):335–346. doi: 10.1016/s0896-6273(00)80848-x. [DOI] [PubMed] [Google Scholar]
  19. Leibovitch B. A., Campbell D. B., Krishnan K. S., Nash H. A. Mutations that affect ion channels change the sensitivity of Drosophila melanogaster to volatile anesthetics. J Neurogenet. 1995 Apr;10(1):1–13. doi: 10.3109/01677069509083455. [DOI] [PubMed] [Google Scholar]
  20. Maclver M. B., Mikulec A. A., Amagasu S. M., Monroe F. A. Volatile anesthetics depress glutamate transmission via presynaptic actions. Anesthesiology. 1996 Oct;85(4):823–834. doi: 10.1097/00000542-199610000-00018. [DOI] [PubMed] [Google Scholar]
  21. Mendel J. E., Korswagen H. C., Liu K. S., Hajdu-Cronin Y. M., Simon M. I., Plasterk R. H., Sternberg P. W. Participation of the protein Go in multiple aspects of behavior in C. elegans. Science. 1995 Mar 17;267(5204):1652–1655. doi: 10.1126/science.7886455. [DOI] [PubMed] [Google Scholar]
  22. Miao N., Frazer M. J., Lynch C., 3rd Volatile anesthetics depress Ca2+ transients and glutamate release in isolated cerebral synaptosomes. Anesthesiology. 1995 Sep;83(3):593–603. doi: 10.1097/00000542-199509000-00019. [DOI] [PubMed] [Google Scholar]
  23. Mihic S. J., Ye Q., Wick M. J., Koltchine V. V., Krasowski M. D., Finn S. E., Mascia M. P., Valenzuela C. F., Hanson K. K., Greenblatt E. P. Sites of alcohol and volatile anaesthetic action on GABA(A) and glycine receptors. Nature. 1997 Sep 25;389(6649):385–389. doi: 10.1038/38738. [DOI] [PubMed] [Google Scholar]
  24. Miller K. G., Emerson M. D., Rand J. B. Goalpha and diacylglycerol kinase negatively regulate the Gqalpha pathway in C. elegans. Neuron. 1999 Oct;24(2):323–333. doi: 10.1016/s0896-6273(00)80847-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Nishikawa K., Kidokoro Y. Halothane presynaptically depresses synaptic transmission in wild-type Drosophila larvae but not in halothane-resistant (har) mutants. Anesthesiology. 1999 Jun;90(6):1691–1697. doi: 10.1097/00000542-199906000-00026. [DOI] [PubMed] [Google Scholar]
  26. Nishikawa K., MacIver M. B. Excitatory synaptic transmission mediated by NMDA receptors is more sensitive to isoflurane than are non-NMDA receptor-mediated responses. Anesthesiology. 2000 Jan;92(1):228–236. doi: 10.1097/00000542-200001000-00035. [DOI] [PubMed] [Google Scholar]
  27. Nonet M. L., Saifee O., Zhao H., Rand J. B., Wei L. Synaptic transmission deficits in Caenorhabditis elegans synaptobrevin mutants. J Neurosci. 1998 Jan 1;18(1):70–80. doi: 10.1523/JNEUROSCI.18-01-00070.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Nurrish S., Ségalat L., Kaplan J. M. Serotonin inhibition of synaptic transmission: Galpha(0) decreases the abundance of UNC-13 at release sites. Neuron. 1999 Sep;24(1):231–242. doi: 10.1016/s0896-6273(00)80835-1. [DOI] [PubMed] [Google Scholar]
  29. Perouansky M., Baranov D., Salman M., Yaari Y. Effects of halothane on glutamate receptor-mediated excitatory postsynaptic currents. A patch-clamp study in adult mouse hippocampal slices. Anesthesiology. 1995 Jul;83(1):109–119. doi: 10.1097/00000542-199507000-00014. [DOI] [PubMed] [Google Scholar]
  30. Richmond J. E., Jorgensen E. M. One GABA and two acetylcholine receptors function at the C. elegans neuromuscular junction. Nat Neurosci. 1999 Sep;2(9):791–797. doi: 10.1038/12160. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Robatzek M., Niacaris T., Steger K., Avery L., Thomas J. H. eat-11 encodes GPB-2, a Gbeta(5) ortholog that interacts with G(o)alpha and G(q)alpha to regulate C. elegans behavior. Curr Biol. 2001 Feb 20;11(4):288–293. doi: 10.1016/s0960-9822(01)00074-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Schlame M., Hemmings H. C., Jr Inhibition by volatile anesthetics of endogenous glutamate release from synaptosomes by a presynaptic mechanism. Anesthesiology. 1995 Jun;82(6):1406–1416. doi: 10.1097/00000542-199506000-00012. [DOI] [PubMed] [Google Scholar]
  33. Song J., Dohlman H. G. Partial constitutive activation of pheromone responses by a palmitoylation-site mutant of a G protein alpha subunit in yeast. Biochemistry. 1996 Nov 26;35(47):14806–14817. doi: 10.1021/bi961846b. [DOI] [PubMed] [Google Scholar]
  34. Ségalat L., Elkes D. A., Kaplan J. M. Modulation of serotonin-controlled behaviors by Go in Caenorhabditis elegans. Science. 1995 Mar 17;267(5204):1648–1651. doi: 10.1126/science.7886454. [DOI] [PubMed] [Google Scholar]
  35. Takenoshita M., Takahashi T. Mechanisms of halothane action on synaptic transmission in motoneurons of the newborn rat spinal cord in vitro. Brain Res. 1987 Feb 3;402(2):303–310. doi: 10.1016/0006-8993(87)90037-0. [DOI] [PubMed] [Google Scholar]
  36. Thomas J. H., Birnby D. A., Vowels J. J. Evidence for parallel processing of sensory information controlling dauer formation in Caenorhabditis elegans. Genetics. 1993 Aug;134(4):1105–1117. doi: 10.1093/genetics/134.4.1105. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. van Swinderen B., Metz L. B., Shebester L. D., Mendel J. E., Sternberg P. W., Crowder C. M. Goalpha regulates volatile anesthetic action in Caenorhabditis elegans. Genetics. 2001 Jun;158(2):643–655. doi: 10.1093/genetics/158.2.643. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. van Swinderen B., Shook D. R., Ebert R. H., Cherkasova V. A., Johnson T. E., Shmookler Reis R. J., Crowder C. M. Quantitative trait loci controlling halothane sensitivity in Caenorhabditis elegans. Proc Natl Acad Sci U S A. 1997 Jul 22;94(15):8232–8237. doi: 10.1073/pnas.94.15.8232. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. van der Linden A. M., Simmer F., Cuppen E., Plasterk R. H. The G-protein beta-subunit GPB-2 in Caenorhabditis elegans regulates the G(o)alpha-G(q)alpha signaling network through interactions with the regulator of G-protein signaling proteins EGL-10 and EAT-16. Genetics. 2001 May;158(1):221–235. doi: 10.1093/genetics/158.1.221. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES