Skip to main content
Genetics logoLink to Genetics
. 2002 Jun;161(2):623–632. doi: 10.1093/genetics/161.2.623

Mutational analysis of the gephyrin-related molybdenum cofactor biosynthetic gene cnxE from the lower eukaryote Aspergillus nidulans.

Immanuel S Heck 1, Joseph D Schrag 1, Joan Sloan 1, Lindsey J Millar 1, Ghassan Kanan 1, James R Kinghorn 1, Shiela E Unkles 1
PMCID: PMC1462130  PMID: 12072459

Abstract

We report the identification of a number of mutations that result in amino acid replacements (and their phenotypic characterization) in either the MogA-like domain or domains 2 and 3 of the MoeA-like region of the Aspergillus nidulans cnxE gene. These domains are functionally required since mutations that result in amino acid substitutions in any one domain lead to the loss or to a substantial reduction in all three identified molybdoenzyme activities (i.e., nitrate reductase, xanthine dehydrogenase, and nicotinate hydroxylase). Certain cnxE mutants that show partial growth with nitrate as the nitrogen source in contrast do not grow on hypoxanthine or nicotinate. Complementation between mutants carrying lesions in the MogA-like domain or the MoeA-like region, respectively, most likely occurs at the protein level. A homology model of CnxE based on the dimeric structure of E. coli MoeA is presented and the position of inactivating mutations (due to amino acid replacements) in the MoeA-like functional region of the CnxE protein is mapped to this model. Finally, the activity of nicotinate hydroxylase, unlike that of nitrate reductase and xanthine dehydrogenase, is not restored in cnxE mutants grown in the presence of excess molybdate.

Full Text

The Full Text of this article is available as a PDF (243.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Appleyard M. V., Sloan J., Kana'n G. J., Heck I. S., Kinghorn J. R., Unkles S. E. The Aspergillus nidulans cnxF gene and its involvement in molybdopterin biosynthesis. Molecular characterization and analysis of in vivo generated mutants. J Biol Chem. 1998 Jun 12;273(24):14869–14876. doi: 10.1074/jbc.273.24.14869. [DOI] [PubMed] [Google Scholar]
  2. Arst H. N., Jr, MacDonald D. W., Cove D. J. Molybdate metabolism in Aspergillus nidulans. I. Mutations affecting nitrate reductase and-or xanthine dehydrogenase. Mol Gen Genet. 1970;108(2):129–145. doi: 10.1007/BF02430519. [DOI] [PubMed] [Google Scholar]
  3. Brünger A. T., Adams P. D., Clore G. M., DeLano W. L., Gros P., Grosse-Kunstleve R. W., Jiang J. S., Kuszewski J., Nilges M., Pannu N. S. Crystallography & NMR system: A new software suite for macromolecular structure determination. Acta Crystallogr D Biol Crystallogr. 1998 Sep 1;54(Pt 5):905–921. doi: 10.1107/s0907444998003254. [DOI] [PubMed] [Google Scholar]
  4. COVE D. J., PATEMAN J. A. Independently segregating genetic loci concerned with nitrate reductase activity in Aspergillus nidulans. Nature. 1963 Apr 20;198:262–263. doi: 10.1038/198262a0. [DOI] [PubMed] [Google Scholar]
  5. Cove D. J. Chlorate toxicity in Aspergillus nidulans. Studies of mutants altered in nitrate assimilation. Mol Gen Genet. 1976 Jul 23;146(2):147–159. doi: 10.1007/BF00268083. [DOI] [PubMed] [Google Scholar]
  6. Cove D. J. Cholorate toxicity in Aspergillus nidulans: the selection and characterisation of chlorate resistant mutants. Heredity (Edinb) 1976 Apr;36(2):191–203. doi: 10.1038/hdy.1976.24. [DOI] [PubMed] [Google Scholar]
  7. Cove D. J. The induction and repression of nitrate reductase in the fungus Aspergillus nidulans. Biochim Biophys Acta. 1966 Jan 11;113(1):51–56. doi: 10.1016/s0926-6593(66)80120-0. [DOI] [PubMed] [Google Scholar]
  8. Feng G., Tintrup H., Kirsch J., Nichol M. C., Kuhse J., Betz H., Sanes J. R. Dual requirement for gephyrin in glycine receptor clustering and molybdoenzyme activity. Science. 1998 Nov 13;282(5392):1321–1324. doi: 10.1126/science.282.5392.1321. [DOI] [PubMed] [Google Scholar]
  9. Heck I. S., Ninnemann H. Molybdenum cofactor biosynthesis in Neurospora crassa: biochemical characterization of pleiotropic molybdoenzyme mutants nit-7, nit-8, nit-9A, B and C. Photochem Photobiol. 1995 Jan;61(1):54–60. doi: 10.1111/j.1751-1097.1995.tb09242.x. [DOI] [PubMed] [Google Scholar]
  10. Johnson M. E., Rajagopalan K. V. Involvement of chlA, E, M, and N loci in Escherichia coli molybdopterin biosynthesis. J Bacteriol. 1987 Jan;169(1):117–125. doi: 10.1128/jb.169.1.117-125.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kamdar K. P., Shelton M. E., Finnerty V. The Drosophila molybdenum cofactor gene cinnamon is homologous to three Escherichia coli cofactor proteins and to the rat protein gephyrin. Genetics. 1994 Jul;137(3):791–801. doi: 10.1093/genetics/137.3.791. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Leimkühler S., Rajagopalan K. V. In vitro incorporation of nascent molybdenum cofactor into human sulfite oxidase. J Biol Chem. 2000 Oct 20;276(3):1837–1844. doi: 10.1074/jbc.M007304200. [DOI] [PubMed] [Google Scholar]
  13. Liu M. T., Wuebbens M. M., Rajagopalan K. V., Schindelin H. Crystal structure of the gephyrin-related molybdenum cofactor biosynthesis protein MogA from Escherichia coli. J Biol Chem. 2000 Jan 21;275(3):1814–1822. doi: 10.1074/jbc.275.3.1814. [DOI] [PubMed] [Google Scholar]
  14. MacDonlad D. W., Cove D. J. Studies on temperature-sensitive mutants affecting the assimilatory nitrate reductase of Aspergillus nidulans. Eur J Biochem. 1974 Aug 15;47(1):107–110. doi: 10.1111/j.1432-1033.1974.tb03673.x. [DOI] [PubMed] [Google Scholar]
  15. Merritt E. A., Bacon D. J. Raster3D: photorealistic molecular graphics. Methods Enzymol. 1997;277:505–524. doi: 10.1016/s0076-6879(97)77028-9. [DOI] [PubMed] [Google Scholar]
  16. Merritt E. A., Murphy M. E. Raster3D Version 2.0. A program for photorealistic molecular graphics. Acta Crystallogr D Biol Crystallogr. 1994 Nov 1;50(Pt 6):869–873. doi: 10.1107/S0907444994006396. [DOI] [PubMed] [Google Scholar]
  17. Millar L. J., Heck I. S., Sloan J., Kana'n G. J., Kinghorn J. R., Unkles S. E. Deletion of the cnxE gene encoding the gephyrin-like protein involved in the final stages of molybdenum cofactor biosynthesis in Aspergillus nidulans. Mol Genet Genomics. 2001 Nov;266(3):445–453. doi: 10.1007/s004380100543. [DOI] [PubMed] [Google Scholar]
  18. PATEMAN J. A., COVE D. J., REVER B. M., ROBERTS D. B. A COMMON CO-FACTOR FOR NITRATE REDUCTASE AND XANTHINE DEHYDROGENASE WHICH ALSO REGULATES THE SYNTHESIS OF NITRATE REDUCTASE. Nature. 1964 Jan 4;201:58–60. doi: 10.1038/201058a0. [DOI] [PubMed] [Google Scholar]
  19. Reiss J., Gross-Hardt S., Christensen E., Schmidt P., Mendel R. R., Schwarz G. A mutation in the gene for the neurotransmitter receptor-clustering protein gephyrin causes a novel form of molybdenum cofactor deficiency. Am J Hum Genet. 2000 Nov 28;68(1):208–213. doi: 10.1086/316941. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Scazzocchio C. The purine degradation pathway, genetics, biochemistry and regulation. Prog Ind Microbiol. 1994;29:221–257. [PubMed] [Google Scholar]
  21. Schrag J. D., Huang W., Sivaraman J., Smith C., Plamondon J., Larocque R., Matte A., Cygler M. The crystal structure of Escherichia coli MoeA, a protein from the molybdopterin synthesis pathway. J Mol Biol. 2001 Jul 6;310(2):419–431. doi: 10.1006/jmbi.2001.4771. [DOI] [PubMed] [Google Scholar]
  22. Schwarz G., Boxer D. H., Mendel R. R. Molybdenum cofactor biosynthesis. The plant protein Cnx1 binds molybdopterin with high affinity. J Biol Chem. 1997 Oct 24;272(43):26811–26814. doi: 10.1074/jbc.272.43.26811. [DOI] [PubMed] [Google Scholar]
  23. Schwarz G., Schulze J., Bittner F., Eilers T., Kuper J., Bollmann G., Nerlich A., Brinkmann H., Mendel R. R. The molybdenum cofactor biosynthetic protein Cnx1 complements molybdate-repairable mutants, transfers molybdenum to the metal binding pterin, and is associated with the cytoskeleton. Plant Cell. 2000 Dec;12(12):2455–2472. doi: 10.1105/tpc.12.12.2455. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Sealy-Lewis H. M., Scazzocchio C., Lee S. A mutation defective in the xanthine alternative pathway of Aspergillus nidulans: its use to investigate the specificity of uaY mediated induction. Mol Gen Genet. 1978 Sep 8;164(3):303–308. doi: 10.1007/BF00333161. [DOI] [PubMed] [Google Scholar]
  25. Sola M., Kneussel M., Heck I. S., Betz H., Weissenhorn W. X-ray crystal structure of the trimeric N-terminal domain of gephyrin. J Biol Chem. 2001 Apr 26;276(27):25294–25301. doi: 10.1074/jbc.M101923200. [DOI] [PubMed] [Google Scholar]
  26. Stallmeyer B., Schwarz G., Schulze J., Nerlich A., Reiss J., Kirsch J., Mendel R. R. The neurotransmitter receptor-anchoring protein gephyrin reconstitutes molybdenum cofactor biosynthesis in bacteria, plants, and mammalian cells. Proc Natl Acad Sci U S A. 1999 Feb 16;96(4):1333–1338. doi: 10.1073/pnas.96.4.1333. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Tomsett A. B., Cove D. J. Deletion mapping of the niiA niaD gene region of Aspergillus nidulans. Genet Res. 1979 Aug;34(1):19–32. doi: 10.1017/s001667230001925x. [DOI] [PubMed] [Google Scholar]
  28. Unkles S. E., Heck I. S., Appleyard M. V., Kinghorn J. R. Eukaryotic molybdopterin synthase. Biochemical and molecular studies of Aspergillus nidulans cnxG and cnxH mutants. J Biol Chem. 1999 Jul 2;274(27):19286–19293. doi: 10.1074/jbc.274.27.19286. [DOI] [PubMed] [Google Scholar]
  29. Xiang S., Nichols J., Rajagopalan K. V., Schindelin H. The crystal structure of Escherichia coli MoeA and its relationship to the multifunctional protein gephyrin. Structure. 2001 Apr 4;9(4):299–310. doi: 10.1016/s0969-2126(01)00588-3. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES