Skip to main content
Genetics logoLink to Genetics
. 2002 Jun;161(2):685–692. doi: 10.1093/genetics/161.2.685

An analysis using the hobo genetic system reveals that combinatorial signaling by the Dpp and Wg pathways regulates dpp expression in leading edge cells of the dorsal ectoderm in Drosophila melanogaster.

S J Newfeld 1, N T Takaesu 1
PMCID: PMC1462141  PMID: 12072465

Abstract

Our laboratory has contributed to the development of a genetic system based upon the hobo transposable element in Drosophila melanogaster. We recently reported that hobo, like the better-known P element, is capable of local transposition. In that study, we mobilized a hobo enhancer trap vector and generated two unique alleles of decapentaplegic (dpp), a transforming growth factor-beta family member with numerous roles during development. Here we report a detailed study of one of those alleles (dpp(F11)). To our knowledge, this is the first application of the hobo genetic system to understanding developmental processes. First, we demonstrate that lacZ expression from the dpp(F11) enhancer trap accurately reflects dpp mRNA accumulation in leading edge cells of the dorsal ectoderm. Then we show that combinatorial signaling by the Wingless (Wg) pathway, the Dpp pathway, and the transcriptional coactivator Nejire (CBP/p300) regulates dpp(F11) expression in these cells. Our analysis of dpp(F11) suggests a model for the integration of Wg and Dpp signals that may be applicable to other developmental systems. Our analysis also illustrates several new features of the hobo genetic system and highlights the value of hobo, as an alternative to P, in addressing developmental questions.

Full Text

The Full Text of this article is available as a PDF (250.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akimaru H., Hou D. X., Ishii S. Drosophila CBP is required for dorsal-dependent twist gene expression. Nat Genet. 1997 Oct;17(2):211–214. doi: 10.1038/ng1097-211. [DOI] [PubMed] [Google Scholar]
  2. Ashburner M., Misra S., Roote J., Lewis S. E., Blazej R., Davis T., Doyle C., Galle R., George R., Harris N. An exploration of the sequence of a 2.9-Mb region of the genome of Drosophila melanogaster: the Adh region. Genetics. 1999 Sep;153(1):179–219. doi: 10.1093/genetics/153.1.179. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Ashe H. L., Mannervik M., Levine M. Dpp signaling thresholds in the dorsal ectoderm of the Drosophila embryo. Development. 2000 Aug;127(15):3305–3312. doi: 10.1242/dev.127.15.3305. [DOI] [PubMed] [Google Scholar]
  4. Blackman R. K., Grimaila R., Koehler M. M., Gelbart W. M. Mobilization of hobo elements residing within the decapentaplegic gene complex: suggestion of a new hybrid dysgenesis system in Drosophila melanogaster. Cell. 1987 May 22;49(4):497–505. doi: 10.1016/0092-8674(87)90452-1. [DOI] [PubMed] [Google Scholar]
  5. Blackman R. K., Sanicola M., Raftery L. A., Gillevet T., Gelbart W. M. An extensive 3' cis-regulatory region directs the imaginal disk expression of decapentaplegic, a member of the TGF-beta family in Drosophila. Development. 1991 Mar;111(3):657–666. doi: 10.1242/dev.111.3.657. [DOI] [PubMed] [Google Scholar]
  6. Chou T. B., Perrimon N. Use of a yeast site-specific recombinase to produce female germline chimeras in Drosophila. Genetics. 1992 Jul;131(3):643–653. doi: 10.1093/genetics/131.3.643. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Crease D. J., Dyson S., Gurdon J. B. Cooperation between the activin and Wnt pathways in the spatial control of organizer gene expression. Proc Natl Acad Sci U S A. 1998 Apr 14;95(8):4398–4403. doi: 10.1073/pnas.95.8.4398. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Das P., Maduzia L. L., Wang H., Finelli A. L., Cho S. H., Smith M. M., Padgett R. W. The Drosophila gene Medea demonstrates the requirement for different classes of Smads in dpp signaling. Development. 1998 Apr;125(8):1519–1528. doi: 10.1242/dev.125.8.1519. [DOI] [PubMed] [Google Scholar]
  9. Huang J. D., Schwyter D. H., Shirokawa J. M., Courey A. J. The interplay between multiple enhancer and silencer elements defines the pattern of decapentaplegic expression. Genes Dev. 1993 Apr;7(4):694–704. doi: 10.1101/gad.7.4.694. [DOI] [PubMed] [Google Scholar]
  10. Kassis J. A., Noll E., VanSickle E. P., Odenwald W. F., Perrimon N. Altering the insertional specificity of a Drosophila transposable element. Proc Natl Acad Sci U S A. 1992 Mar 1;89(5):1919–1923. doi: 10.1073/pnas.89.5.1919. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kopp A., Blackman R. K., Duncan I. Wingless, decapentaplegic and EGF receptor signaling pathways interact to specify dorso-ventral pattern in the adult abdomen of Drosophila. Development. 1999 Aug;126(16):3495–3507. doi: 10.1242/dev.126.16.3495. [DOI] [PubMed] [Google Scholar]
  12. Lecuit T., Cohen S. M. Proximal-distal axis formation in the Drosophila leg. Nature. 1997 Jul 10;388(6638):139–145. doi: 10.1038/40563. [DOI] [PubMed] [Google Scholar]
  13. Marquez R. M., Singer M. A., Takaesu N. T., Waldrip W. R., Kraytsberg Y., Newfeld S. J. Transgenic analysis of the Smad family of TGF-beta signal transducers in Drosophila melanogaster suggests new roles and new interactions between family members. Genetics. 2001 Apr;157(4):1639–1648. doi: 10.1093/genetics/157.4.1639. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. McEwen D. G., Cox R. T., Peifer M. The canonical Wg and JNK signaling cascades collaborate to promote both dorsal closure and ventral patterning. Development. 2000 Aug;127(16):3607–3617. doi: 10.1242/dev.127.16.3607. [DOI] [PubMed] [Google Scholar]
  15. Newfeld S. J., Chartoff E. H., Graff J. M., Melton D. A., Gelbart W. M. Mothers against dpp encodes a conserved cytoplasmic protein required in DPP/TGF-beta responsive cells. Development. 1996 Jul;122(7):2099–2108. doi: 10.1242/dev.122.7.2099. [DOI] [PubMed] [Google Scholar]
  16. Newfeld S. J., Padgett R. W., Findley S. D., Richter B. G., Sanicola M., de Cuevas M., Gelbart W. M. Molecular evolution at the decapentaplegic locus in Drosophila. Genetics. 1997 Feb;145(2):297–309. doi: 10.1093/genetics/145.2.297. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Nishita M., Hashimoto M. K., Ogata S., Laurent M. N., Ueno N., Shibuya H., Cho K. W. Interaction between Wnt and TGF-beta signalling pathways during formation of Spemann's organizer. Nature. 2000 Feb 17;403(6771):781–785. doi: 10.1038/35001602. [DOI] [PubMed] [Google Scholar]
  18. Peifer M., Wieschaus E. The segment polarity gene armadillo encodes a functionally modular protein that is the Drosophila homolog of human plakoglobin. Cell. 1990 Dec 21;63(6):1167–1176. doi: 10.1016/0092-8674(90)90413-9. [DOI] [PubMed] [Google Scholar]
  19. Polakis P. Wnt signaling and cancer. Genes Dev. 2000 Aug 1;14(15):1837–1851. [PubMed] [Google Scholar]
  20. Ray R. P., Arora K., Nüsslein-Volhard C., Gelbart W. M. The control of cell fate along the dorsal-ventral axis of the Drosophila embryo. Development. 1991 Sep;113(1):35–54. doi: 10.1242/dev.113.1.35. [DOI] [PubMed] [Google Scholar]
  21. Riesgo-Escovar J. R., Hafen E. Common and distinct roles of DFos and DJun during Drosophila development. Science. 1997 Oct 24;278(5338):669–672. doi: 10.1126/science.278.5338.669. [DOI] [PubMed] [Google Scholar]
  22. Rushlow C., Colosimo P. F., Lin M. C., Xu M., Kirov N. Transcriptional regulation of the Drosophila gene zen by competing Smad and Brinker inputs. Genes Dev. 2001 Feb 1;15(3):340–351. doi: 10.1101/gad.861401. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Shulman J. M., Perrimon N., Axelrod J. D. Frizzled signaling and the developmental control of cell polarity. Trends Genet. 1998 Nov;14(11):452–458. doi: 10.1016/s0168-9525(98)01584-4. [DOI] [PubMed] [Google Scholar]
  24. Smith D., Wohlgemuth J., Calvi B. R., Franklin I., Gelbart W. M. hobo enhancer trapping mutagenesis in Drosophila reveals an insertion specificity different from P elements. Genetics. 1993 Dec;135(4):1063–1076. doi: 10.1093/genetics/135.4.1063. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Spradling A. C., Stern D., Beaton A., Rhem E. J., Laverty T., Mozden N., Misra S., Rubin G. M. The Berkeley Drosophila Genome Project gene disruption project: Single P-element insertions mutating 25% of vital Drosophila genes. Genetics. 1999 Sep;153(1):135–177. doi: 10.1093/genetics/153.1.135. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Torres-Vazquez J., Park S., Warrior R., Arora K. The transcription factor Schnurri plays a dual role in mediating Dpp signaling during embryogenesis. Development. 2001 May;128(9):1657–1670. doi: 10.1242/dev.128.9.1657. [DOI] [PubMed] [Google Scholar]
  27. Waltzer L., Bienz M. A function of CBP as a transcriptional co-activator during Dpp signalling. EMBO J. 1999 Mar 15;18(6):1630–1641. doi: 10.1093/emboj/18.6.1630. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Waltzer L., Bienz M. Drosophila CBP represses the transcription factor TCF to antagonize Wingless signalling. Nature. 1998 Oct 1;395(6701):521–525. doi: 10.1038/26785. [DOI] [PubMed] [Google Scholar]
  29. Wisotzkey R. G., Mehra A., Sutherland D. J., Dobens L. L., Liu X., Dohrmann C., Attisano L., Raftery L. A. Medea is a Drosophila Smad4 homolog that is differentially required to potentiate DPP responses. Development. 1998 Apr;125(8):1433–1445. doi: 10.1242/dev.125.8.1433. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES