Skip to main content
Genetics logoLink to Genetics
. 2002 Jul;161(3):1269–1278. doi: 10.1093/genetics/161.3.1269

Recombination and gene conversion in a 170-kb genomic region of Arabidopsis thaliana.

Bernhard Haubold 1, Jürgen Kroymann 1, Andreas Ratzka 1, Thomas Mitchell-Olds 1, Thomas Wiehe 1
PMCID: PMC1462186  PMID: 12136029

Abstract

Arabidopsis thaliana is a highly selfing plant that nevertheless appears to undergo substantial recombination. To reconcile its selfing habit with the observations of recombination, we have sampled the genetic diversity of A. thaliana at 14 loci of approximately 500 bp each, spread across 170 kb of genomic sequence centered on a QTL for resistance to herbivory. A total of 170 of the 6321 nucleotides surveyed were polymorphic, with 169 being biallelic. The mean silent genetic diversity (pi(s)) varied between 0.001 and 0.03. Pairwise linkage disequilibria between the polymorphisms were negatively correlated with distance, although this effect vanished when only pairs of polymorphisms with four haplotypes were included in the analysis. The absence of a consistent negative correlation between distance and linkage disequilibrium indicated that gene conversion might have played an important role in distributing genetic diversity throughout the region. We tested this by coalescent simulations and estimate that up to 90% of recombination is due to gene conversion.

Full Text

The Full Text of this article is available as a PDF (192.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arabidopsis Genome Initiative Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature. 2000 Dec 14;408(6814):796–815. doi: 10.1038/35048692. [DOI] [PubMed] [Google Scholar]
  2. Brown A. H., Feldman M. W., Nevo E. Multilocus Structure of Natural Populations of HORDEUM SPONTANEUM. Genetics. 1980 Oct;96(2):523–536. doi: 10.1093/genetics/96.2.523. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Charlesworth D., Charlesworth B., McVean G. A.T. Genome sequences and evolutionary biology, a two-way interaction. Trends Ecol Evol. 2001 May 1;16(5):235–242. doi: 10.1016/s0169-5347(01)02126-7. [DOI] [PubMed] [Google Scholar]
  4. Eigen M., Winkler-Oswatitsch R., Dress A. Statistical geometry in sequence space: a method of quantitative comparative sequence analysis. Proc Natl Acad Sci U S A. 1988 Aug;85(16):5913–5917. doi: 10.1073/pnas.85.16.5913. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Feil E. J., Holmes E. C., Bessen D. E., Chan M. S., Day N. P., Enright M. C., Goldstein R., Hood D. W., Kalia A., Moore C. E. Recombination within natural populations of pathogenic bacteria: short-term empirical estimates and long-term phylogenetic consequences. Proc Natl Acad Sci U S A. 2001 Jan 2;98(1):182–187. doi: 10.1073/pnas.98.1.182. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Hanfstingl U., Berry A., Kellogg E. A., Costa J. T., 3rd, Rüdiger W., Ausubel F. M. Haplotypic divergence coupled with lack of diversity at the Arabidopsis thaliana alcohol dehydrogenase locus: roles for both balancing and directional selection? Genetics. 1994 Nov;138(3):811–828. doi: 10.1093/genetics/138.3.811. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Haubold B., Hudson R. R. LIAN 3.0: detecting linkage disequilibrium in multilocus data. Linkage Analysis. Bioinformatics. 2000 Sep;16(9):847–848. doi: 10.1093/bioinformatics/16.9.847. [DOI] [PubMed] [Google Scholar]
  8. Haubold B., Travisano M., Rainey P. B., Hudson R. R. Detecting linkage disequilibrium in bacterial populations. Genetics. 1998 Dec;150(4):1341–1348. doi: 10.1093/genetics/150.4.1341. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hilliker A. J., Harauz G., Reaume A. G., Gray M., Clark S. H., Chovnick A. Meiotic gene conversion tract length distribution within the rosy locus of Drosophila melanogaster. Genetics. 1994 Aug;137(4):1019–1026. doi: 10.1093/genetics/137.4.1019. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kawabe A., Innan H., Terauchi R., Miyashita N. T. Nucleotide polymorphism in the acidic chitinase locus (ChiA) region of the wild plant Arabidopsis thaliana. Mol Biol Evol. 1997 Dec;14(12):1303–1315. doi: 10.1093/oxfordjournals.molbev.a025740. [DOI] [PubMed] [Google Scholar]
  11. Kroymann J., Textor S., Tokuhisa J. G., Falk K. L., Bartram S., Gershenzon J., Mitchell-Olds T. A gene controlling variation in Arabidopsis glucosinolate composition is part of the methionine chain elongation pathway. Plant Physiol. 2001 Nov;127(3):1077–1088. [PMC free article] [PubMed] [Google Scholar]
  12. Kuittinen H., Aguadé M. Nucleotide variation at the CHALCONE ISOMERASE locus in Arabidopsis thaliana. Genetics. 2000 Jun;155(2):863–872. doi: 10.1093/genetics/155.2.863. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Langley C. H., Lazzaro B. P., Phillips W., Heikkinen E., Braverman J. M. Linkage disequilibria and the site frequency spectra in the su(s) and su(w(a)) regions of the Drosophila melanogaster X chromosome. Genetics. 2000 Dec;156(4):1837–1852. doi: 10.1093/genetics/156.4.1837. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Lewontin R C. The Interaction of Selection and Linkage. I. General Considerations; Heterotic Models. Genetics. 1964 Jan;49(1):49–67. doi: 10.1093/genetics/49.1.49. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Nordborg Magnus, Borevitz Justin O., Bergelson Joy, Berry Charles C., Chory Joanne, Hagenblad Jenny, Kreitman Martin, Maloof Julin N., Noyes Tina, Oefner Peter J. The extent of linkage disequilibrium in Arabidopsis thaliana. Nat Genet. 2002 Jan 7;30(2):190–193. doi: 10.1038/ng813. [DOI] [PubMed] [Google Scholar]
  16. Parham P., Adams E. J., Arnett K. L. The origins of HLA-A,B,C polymorphism. Immunol Rev. 1995 Feb;143:141–180. doi: 10.1111/j.1600-065x.1995.tb00674.x. [DOI] [PubMed] [Google Scholar]
  17. Purugganan M. D., Suddith J. I. Molecular population genetics of floral homeotic loci. Departures from the equilibrium-neutral model at the APETALA3 and PISTILLATA genes of Arabidopsis thaliana. Genetics. 1999 Feb;151(2):839–848. doi: 10.1093/genetics/151.2.839. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Purugganan M. D., Suddith J. I. Molecular population genetics of the Arabidopsis CAULIFLOWER regulatory gene: nonneutral evolution and naturally occurring variation in floral homeotic function. Proc Natl Acad Sci U S A. 1998 Jul 7;95(14):8130–8134. doi: 10.1073/pnas.95.14.8130. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Savolainen O., Langley C. H., Lazzaro B. P., Fr H. Contrasting patterns of nucleotide polymorphism at the alcohol dehydrogenase locus in the outcrossing Arabidopsis lyrata and the selfing Arabidopsis thaliana. Mol Biol Evol. 2000 Apr;17(4):645–655. doi: 10.1093/oxfordjournals.molbev.a026343. [DOI] [PubMed] [Google Scholar]
  20. Sharbel T. F., Haubold B., Mitchell-Olds T. Genetic isolation by distance in Arabidopsis thaliana: biogeography and postglacial colonization of Europe. Mol Ecol. 2000 Dec;9(12):2109–2118. doi: 10.1046/j.1365-294x.2000.01122.x. [DOI] [PubMed] [Google Scholar]
  21. Smith J. M., Smith N. H., O'Rourke M., Spratt B. G. How clonal are bacteria? Proc Natl Acad Sci U S A. 1993 May 15;90(10):4384–4388. doi: 10.1073/pnas.90.10.4384. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Stahl E. A., Dwyer G., Mauricio R., Kreitman M., Bergelson J. Dynamics of disease resistance polymorphism at the Rpm1 locus of Arabidopsis. Nature. 1999 Aug 12;400(6745):667–671. doi: 10.1038/23260. [DOI] [PubMed] [Google Scholar]
  23. Wiehe T., Mountain J., Parham P., Slatkin M. Distinguishing recombination and intragenic gene conversion by linkage disequilibrium patterns. Genet Res. 2000 Feb;75(1):61–73. doi: 10.1017/s0016672399004036. [DOI] [PubMed] [Google Scholar]
  24. Wiuf C., Hein J. The coalescent with gene conversion. Genetics. 2000 May;155(1):451–462. doi: 10.1093/genetics/155.1.451. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES