Skip to main content
Genetics logoLink to Genetics
. 2002 Sep;162(1):341–353. doi: 10.1093/genetics/162.1.341

An allelic series of mutations in the Kit ligand gene of mice. II. Effects of ethylnitrosourea-induced Kitl point mutations on survival and peripheral blood cells of Kitl(Steel) mice.

S Rajaraman 1, W S Davis 1, A Mahakali-Zama 1, H K Evans 1, L B Russell 1, M A Bedell 1
PMCID: PMC1462233  PMID: 12242245

Abstract

The ligand for the Kit receptor tyrosine kinase is Kit ligand (Kitl; also known as mast cell growth factor, stem cell factor, and Steel factor), which is encoded at the Steel (Sl) locus of mice. Previous studies revealed that Kitl(Sl) mutations have semidominant effects; mild pigmentation defects and macrocytic, hypoplastic anemia occur in heterozygous mice, and more severe pigmentation defects and anemia occur in homozygotes. Lethality also occurs in mice homozygous for severe Kitl(Sl) mutations. We describe the effects of seven new N-ethyl-N-nitrosourea (ENU)-induced Kitl(Sl) mutations and two previously characterized severe Kitl(Sl) mutations on pigmentation, peripheral blood cells, and mouse survival. Mice heterozygous for each of the nine mutations had reduced coat pigmentation and macrocytosis of peripheral blood. In the case of some of these mutations, however, red blood cell (RBC) counts, hemoglobin concentrations, and hematocrits were normal in heterozygotes, even though homozygotes exhibited severely reduced RBC counts and lethality. In homozygous mice, the extent of anemia generally correlates with effects on viability for most Kitl(Sl) mutations; i.e., most mutations that cause lethality also cause a more severe anemia than that of mutations that allow viability. Interestingly, lethality and anemia were not directly correlated in the case of one Kitl(Sl) mutation.

Full Text

The Full Text of this article is available as a PDF (459.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bedell M. A., Cleveland L. S., O'Sullivan T. N., Copeland N. G., Jenkins N. A. Deletion and interallelic complementation analysis of Steel mutant mice. Genetics. 1996 Mar;142(3):935–944. doi: 10.1093/genetics/142.3.935. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bedell M. A., Copeland N. G., Jenkins N. A. Multiple pathways for Steel regulation suggested by genomic and sequence analysis of the murine Steel gene. Genetics. 1996 Mar;142(3):927–934. doi: 10.1093/genetics/142.3.927. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Besmer P., Manova K., Duttlinger R., Huang E. J., Packer A., Gyssler C., Bachvarova R. F. The kit-ligand (steel factor) and its receptor c-kit/W: pleiotropic roles in gametogenesis and melanogenesis. Dev Suppl. 1993:125–137. [PubMed] [Google Scholar]
  4. Blume-Jensen P., Jiang G., Hyman R., Lee K. F., O'Gorman S., Hunter T. Kit/stem cell factor receptor-induced activation of phosphatidylinositol 3'-kinase is essential for male fertility. Nat Genet. 2000 Feb;24(2):157–162. doi: 10.1038/72814. [DOI] [PubMed] [Google Scholar]
  5. Brannan C. I., Lyman S. D., Williams D. E., Eisenman J., Anderson D. M., Cosman D., Bedell M. A., Jenkins N. A., Copeland N. G. Steel-Dickie mutation encodes a c-kit ligand lacking transmembrane and cytoplasmic domains. Proc Natl Acad Sci U S A. 1991 Jun 1;88(11):4671–4674. doi: 10.1073/pnas.88.11.4671. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Flanagan J. G., Chan D. C., Leder P. Transmembrane form of the kit ligand growth factor is determined by alternative splicing and is missing in the Sld mutant. Cell. 1991 Mar 8;64(5):1025–1035. doi: 10.1016/0092-8674(91)90326-t. [DOI] [PubMed] [Google Scholar]
  7. Jordan S. A., Speed R. M., Bernex F., Jackson I. J. Deficiency of Trp53 rescues the male fertility defects of Kit(W-v) mice but has no effect on the survival of melanocytes and mast cells. Dev Biol. 1999 Nov 1;215(1):78–90. doi: 10.1006/dbio.1999.9440. [DOI] [PubMed] [Google Scholar]
  8. Laky K., Lefrançois L., Puddington L. Age-dependent intestinal lymphoproliferative disorder due to stem cell factor receptor deficiency: parameters in small and large intestine. J Immunol. 1997 Feb 1;158(3):1417–1427. [PubMed] [Google Scholar]
  9. Lev S., Blechman J. M., Givol D., Yarden Y. Steel factor and c-kit protooncogene: genetic lessons in signal transduction. Crit Rev Oncog. 1994;5(2-3):141–168. doi: 10.1615/critrevoncog.v5.i2-3.30. [DOI] [PubMed] [Google Scholar]
  10. Maeda H., Yamagata A., Nishikawa S., Yoshinaga K., Kobayashi S., Nishi K., Nishikawa S. Requirement of c-kit for development of intestinal pacemaker system. Development. 1992 Oct;116(2):369–375. doi: 10.1242/dev.116.2.369. [DOI] [PubMed] [Google Scholar]
  11. Motro B., Wojtowicz J. M., Bernstein A., van der Kooy D. Steel mutant mice are deficient in hippocampal learning but not long-term potentiation. Proc Natl Acad Sci U S A. 1996 Mar 5;93(5):1808–1813. doi: 10.1073/pnas.93.5.1808. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Nishikawa M., Tojo A., Ikebuchi K., Katayama K., Fujii N., Ozawa K., Asano S. Deletion mutagenesis of stem cell factor defines the C-terminal sequences essential for its biological activity. Biochem Biophys Res Commun. 1992 Oct 15;188(1):292–297. doi: 10.1016/0006-291x(92)92383-9. [DOI] [PubMed] [Google Scholar]
  13. Nocka K., Tan J. C., Chiu E., Chu T. Y., Ray P., Traktman P., Besmer P. Molecular bases of dominant negative and loss of function mutations at the murine c-kit/white spotting locus: W37, Wv, W41 and W. EMBO J. 1990 Jun;9(6):1805–1813. doi: 10.1002/j.1460-2075.1990.tb08305.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Rajaraman S., Davis W. S., Mahakali-Zama A., Evans H. K., Russell L. B., Bedell M. A. An allelic series of mutations in the kit ligand gene of mice. I. Identification of point mutations in seven ethylnitrosourea-induced Kitl(Steel) alleles. Genetics. 2002 Sep;162(1):331–340. doi: 10.1093/genetics/162.1.331. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Rodewald H. R., Kretzschmar K., Swat W., Takeda S. Intrathymically expressed c-kit ligand (stem cell factor) is a major factor driving expansion of very immature thymocytes in vivo. Immunity. 1995 Sep;3(3):313–319. doi: 10.1016/1074-7613(95)90116-7. [DOI] [PubMed] [Google Scholar]
  16. Russell E. S. Hereditary anemias of the mouse: a review for geneticists. Adv Genet. 1979;20:357–459. [PubMed] [Google Scholar]
  17. Russell W. L., Hunsicker P. R., Raymer G. D., Steele M. H., Stelzner K. F., Thompson H. M. Dose--response curve for ethylnitrosourea-induced specific-locus mutations in mouse spermatogonia. Proc Natl Acad Sci U S A. 1982 Jun;79(11):3589–3591. doi: 10.1073/pnas.79.11.3589. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Schumacher A., Faust C., Magnuson T. Positional cloning of a global regulator of anterior-posterior patterning in mice. Nature. 1996 Dec 19;384(6610):648–648. doi: 10.1038/384648a0. [DOI] [PubMed] [Google Scholar]
  19. Zhang Z., Zhang R., Joachimiak A., Schlessinger J., Kong X. P. Crystal structure of human stem cell factor: implication for stem cell factor receptor dimerization and activation. Proc Natl Acad Sci U S A. 2000 Jul 5;97(14):7732–7737. doi: 10.1073/pnas.97.14.7732. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES