Skip to main content
Genetics logoLink to Genetics
. 2002 Sep;162(1):521–524. doi: 10.1093/genetics/162.1.521

Identification of 1088 new transposon insertions of Caenorhabditis elegans: a pilot study toward large-scale screens.

Edwige Martin 1, Hélène Laloux 1, Gaëlle Couette 1, Thierry Alvarez 1, Catherine Bessou 1, Oliver Hauser 1, Satis Sookhareea 1, Michel Labouesse 1, Laurent Ségalat 1
PMCID: PMC1462269  PMID: 12242258

Abstract

We explored the feasibility of a strategy based on transposons to generate identified mutants of most Caenorhabditis elegans genes. A total of 1088 random new insertions of C. elegans transposons Tc1, Tc3, and Tc5 were identified by anchored PCR, some of which result in a mutant phenotype.

Full Text

The Full Text of this article is available as a PDF (63.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. C. elegans Sequencing Consortium Genome sequence of the nematode C. elegans: a platform for investigating biology. Science. 1998 Dec 11;282(5396):2012–2018. doi: 10.1126/science.282.5396.2012. [DOI] [PubMed] [Google Scholar]
  2. Collins J. J., Anderson P. The Tc5 family of transposable elements in Caenorhabditis elegans. Genetics. 1994 Jul;137(3):771–781. doi: 10.1093/genetics/137.3.771. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Fraser A. G., Kamath R. S., Zipperlen P., Martinez-Campos M., Sohrmann M., Ahringer J. Functional genomic analysis of C. elegans chromosome I by systematic RNA interference. Nature. 2000 Nov 16;408(6810):325–330. doi: 10.1038/35042517. [DOI] [PubMed] [Google Scholar]
  4. Golden J. W., Riddle D. L. A pheromone-induced developmental switch in Caenorhabditis elegans: Temperature-sensitive mutants reveal a wild-type temperature-dependent process. Proc Natl Acad Sci U S A. 1984 Feb;81(3):819–823. doi: 10.1073/pnas.81.3.819. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Gönczy P., Echeverri C., Oegema K., Coulson A., Jones S. J., Copley R. R., Duperon J., Oegema J., Brehm M., Cassin E. Functional genomic analysis of cell division in C. elegans using RNAi of genes on chromosome III. Nature. 2000 Nov 16;408(6810):331–336. doi: 10.1038/35042526. [DOI] [PubMed] [Google Scholar]
  6. Hanazawa M., Mochii M., Ueno N., Kohara Y., Iino Y. Use of cDNA subtraction and RNA interference screens in combination reveals genes required for germ-line development in Caenorhabditis elegans. Proc Natl Acad Sci U S A. 2001 Jul 10;98(15):8686–8691. doi: 10.1073/pnas.141004698. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Ketting R. F., Haverkamp T. H., van Luenen H. G., Plasterk R. H. Mut-7 of C. elegans, required for transposon silencing and RNA interference, is a homolog of Werner syndrome helicase and RNaseD. Cell. 1999 Oct 15;99(2):133–141. doi: 10.1016/s0092-8674(00)81645-1. [DOI] [PubMed] [Google Scholar]
  8. Lewis J. A., Hodgkin J. A. Specific neuroanatomical changes in chemosensory mutants of the nematode Caenorhabditis elegans. J Comp Neurol. 1977 Apr 1;172(3):489–510. doi: 10.1002/cne.901720306. [DOI] [PubMed] [Google Scholar]
  9. Liao G. C., Rehm E. J., Rubin G. M. Insertion site preferences of the P transposable element in Drosophila melanogaster. Proc Natl Acad Sci U S A. 2000 Mar 28;97(7):3347–3351. doi: 10.1073/pnas.050017397. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Maeda I., Kohara Y., Yamamoto M., Sugimoto A. Large-scale analysis of gene function in Caenorhabditis elegans by high-throughput RNAi. Curr Biol. 2001 Feb 6;11(3):171–176. doi: 10.1016/s0960-9822(01)00052-5. [DOI] [PubMed] [Google Scholar]
  11. Piano F., Schetter A. J., Mangone M., Stein L., Kemphues K. J. RNAi analysis of genes expressed in the ovary of Caenorhabditis elegans. Curr Biol. 2000 Dec 14;10(24):1619–1622. doi: 10.1016/s0960-9822(00)00869-1. [DOI] [PubMed] [Google Scholar]
  12. Plasterk R. H., Izsvák Z., Ivics Z. Resident aliens: the Tc1/mariner superfamily of transposable elements. Trends Genet. 1999 Aug;15(8):326–332. doi: 10.1016/s0168-9525(99)01777-1. [DOI] [PubMed] [Google Scholar]
  13. Prasad B. C., Ye B., Zackhary R., Schrader K., Seydoux G., Reed R. R. unc-3, a gene required for axonal guidance in Caenorhabditis elegans, encodes a member of the O/E family of transcription factors. Development. 1998 Apr;125(8):1561–1568. doi: 10.1242/dev.125.8.1561. [DOI] [PubMed] [Google Scholar]
  14. Rushforth A. M., Anderson P. Splicing removes the Caenorhabditis elegans transposon Tc1 from most mutant pre-mRNAs. Mol Cell Biol. 1996 Jan;16(1):422–429. doi: 10.1128/mcb.16.1.422. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Vidan S., Snyder M. Large-scale mutagenesis: yeast genetics in the genome era. Curr Opin Biotechnol. 2001 Feb;12(1):28–34. doi: 10.1016/s0958-1669(00)00171-3. [DOI] [PubMed] [Google Scholar]
  16. Waterston R. H. The minor myosin heavy chain, mhcA, of Caenorhabditis elegans is necessary for the initiation of thick filament assembly. EMBO J. 1989 Nov;8(11):3429–3436. doi: 10.1002/j.1460-2075.1989.tb08507.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Wicks S. R., de Vries C. J., van Luenen H. G., Plasterk R. H. CHE-3, a cytosolic dynein heavy chain, is required for sensory cilia structure and function in Caenorhabditis elegans. Dev Biol. 2000 May 15;221(2):295–307. doi: 10.1006/dbio.2000.9686. [DOI] [PubMed] [Google Scholar]
  18. Zambrowicz B. P., Friedrich G. A., Buxton E. C., Lilleberg S. L., Person C., Sands A. T. Disruption and sequence identification of 2,000 genes in mouse embryonic stem cells. Nature. 1998 Apr 9;392(6676):608–611. doi: 10.1038/33423. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES