Skip to main content
Genetics logoLink to Genetics
. 2002 Oct;162(2):961–971. doi: 10.1093/genetics/162.2.961

Evaluating the impact of population bottlenecks in experimental evolution.

Lindi M Wahl 1, Philip J Gerrish 1, Ivan Saika-Voivod 1
PMCID: PMC1462272  PMID: 12399403

Abstract

Experimental evolution involves severe, periodic reductions in population size when fresh media are inoculated during serial transfer. These bottlenecks affect the dynamics of evolution, reducing the probability that a beneficial mutation will reach fixation. We quantify the impact of these bottlenecks on the evolutionary dynamics, for populations that grow exponentially between transfers and for populations in which growth is curbed by a resource-limited environment. We find that in both cases, mutations that survive bottlenecks are equally likely to occur, per unit time, at all times during the growth phase. We estimate the total fraction of beneficial mutations that are lost due to bottlenecks during experimental evolution protocols and derive the "optimal" dilution ratio, the ratio that maximizes the number of surviving beneficial mutations. Although more severe dilution ratios are often used in the literature, we find that a ratio of 0.1-0.2 minimizes the chances that rare beneficial mutations are lost. Finally, we provide a number of useful approximate results and illustrate our approach with applications to experimental evolution protocols in the literature.

Full Text

The Full Text of this article is available as a PDF (152.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Appenzeller T. Test tube evolution catches time in a bottle. Science. 1999 Jun 25;284(5423):2108–2110. doi: 10.1126/science.284.5423.2108. [DOI] [PubMed] [Google Scholar]
  2. Bull J. J., Badgett M. R., Wichman H. A. Big-benefit mutations in a bacteriophage inhibited with heat. Mol Biol Evol. 2000 Jun;17(6):942–950. doi: 10.1093/oxfordjournals.molbev.a026375. [DOI] [PubMed] [Google Scholar]
  3. Bull J. J., Badgett M. R., Wichman H. A., Huelsenbeck J. P., Hillis D. M., Gulati A., Ho C., Molineux I. J. Exceptional convergent evolution in a virus. Genetics. 1997 Dec;147(4):1497–1507. doi: 10.1093/genetics/147.4.1497. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Burch C. L., Chao L. Evolution by small steps and rugged landscapes in the RNA virus phi6. Genetics. 1999 Mar;151(3):921–927. doi: 10.1093/genetics/151.3.921. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Lenski R. E., Travisano M. Dynamics of adaptation and diversification: a 10,000-generation experiment with bacterial populations. Proc Natl Acad Sci U S A. 1994 Jul 19;91(15):6808–6814. doi: 10.1073/pnas.91.15.6808. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Levin B. R., Perrot V., Walker N. Compensatory mutations, antibiotic resistance and the population genetics of adaptive evolution in bacteria. Genetics. 2000 Mar;154(3):985–997. doi: 10.1093/genetics/154.3.985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Otto S. P., Whitlock M. C. The probability of fixation in populations of changing size. Genetics. 1997 Jun;146(2):723–733. doi: 10.1093/genetics/146.2.723. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Papadopoulos D., Schneider D., Meier-Eiss J., Arber W., Lenski R. E., Blot M. Genomic evolution during a 10,000-generation experiment with bacteria. Proc Natl Acad Sci U S A. 1999 Mar 30;96(7):3807–3812. doi: 10.1073/pnas.96.7.3807. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Pollak E. Fixation probabilities when the population size undergoes cyclic fluctuations. Theor Popul Biol. 2000 Feb;57(1):51–58. doi: 10.1006/tpbi.1999.1436. [DOI] [PubMed] [Google Scholar]
  10. Rainey P. B., Travisano M. Adaptive radiation in a heterogeneous environment. Nature. 1998 Jul 2;394(6688):69–72. doi: 10.1038/27900. [DOI] [PubMed] [Google Scholar]
  11. Rosenzweig R. F., Sharp R. R., Treves D. S., Adams J. Microbial evolution in a simple unstructured environment: genetic differentiation in Escherichia coli. Genetics. 1994 Aug;137(4):903–917. doi: 10.1093/genetics/137.4.903. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Schrag S. J., Perrot V. Reducing antibiotic resistance. Nature. 1996 May 9;381(6578):120–121. doi: 10.1038/381120b0. [DOI] [PubMed] [Google Scholar]
  13. Sniegowski P. D., Gerrish P. J., Lenski R. E. Evolution of high mutation rates in experimental populations of E. coli. Nature. 1997 Jun 12;387(6634):703–705. doi: 10.1038/42701. [DOI] [PubMed] [Google Scholar]
  14. Wahl L. M., Gerrish P. J. The probability that beneficial mutations are lost in populations with periodic bottlenecks. Evolution. 2001 Dec;55(12):2606–2610. doi: 10.1111/j.0014-3820.2001.tb00772.x. [DOI] [PubMed] [Google Scholar]
  15. Wahl L. M., Krakauer D. C. Models of experimental evolution: the role of genetic chance and selective necessity. Genetics. 2000 Nov;156(3):1437–1448. doi: 10.1093/genetics/156.3.1437. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Wichman H. A., Badgett M. R., Scott L. A., Boulianne C. M., Bull J. J. Different trajectories of parallel evolution during viral adaptation. Science. 1999 Jul 16;285(5426):422–424. doi: 10.1126/science.285.5426.422. [DOI] [PubMed] [Google Scholar]
  17. Wright S. Evolution in Mendelian Populations. Genetics. 1931 Mar;16(2):97–159. doi: 10.1093/genetics/16.2.97. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES