Skip to main content
Genetics logoLink to Genetics
. 2002 Oct;162(2):893–915. doi: 10.1093/genetics/162.2.893

Genetic analysis of natural variations in the architecture of Arabidopsis thaliana vegetative leaves.

José Manuel Pérez-Pérez 1, José Serrano-Cartagena 1, José Luis Micol 1
PMCID: PMC1462278  PMID: 12399398

Abstract

To ascertain whether intraspecific variability might be a source of information as regards the genetic controls underlying plant leaf morphogenesis, we analyzed variations in the architecture of vegetative leaves in a large sample of Arabidopsis thaliana natural races. A total of 188 accessions from the Arabidopsis Information Service collection were grown and qualitatively classified into 14 phenotypic classes, which were defined according to petiole length, marginal configuration, and overall lamina shape. Accessions displaying extreme and opposite variations in the above-mentioned leaf architectural traits were crossed and their F(2) progeny was found to be not classifiable into discrete phenotypic classes. Furthermore, the leaf trait-based classification was not correlated with estimates on the genetic distances between the accessions being crossed, calculated after determining variations in repeat number at 22 microsatellite loci. Since these results suggested that intraspecific variability in A. thaliana leaf morphology arises from an accumulation of mutations at quantitative trait loci (QTL), we studied a mapping population of recombinant inbred lines (RILs) derived from a Landsberg erecta-0 x Columbia-4 cross. A total of 100 RILs were grown and the third and seventh leaves of 15 individuals from each RIL were collected and morphometrically analyzed. We identified a total of 16 and 13 QTL harboring naturally occurring alleles that contribute to natural variations in the architecture of juvenile and adult leaves, respectively. Our QTL mapping results confirmed the multifactorial nature of the observed natural variations in leaf architecture.

Full Text

The Full Text of this article is available as a PDF (727.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alonso-Blanco C., Blankestijn-de Vries H., Hanhart C. J., Koornneef M. Natural allelic variation at seed size loci in relation to other life history traits of Arabidopsis thaliana. Proc Natl Acad Sci U S A. 1999 Apr 13;96(8):4710–4717. doi: 10.1073/pnas.96.8.4710. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Alonso-Blanco C., El-Assal S. E., Coupland G., Koornneef M. Analysis of natural allelic variation at flowering time loci in the Landsberg erecta and Cape Verde Islands ecotypes of Arabidopsis thaliana. Genetics. 1998 Jun;149(2):749–764. doi: 10.1093/genetics/149.2.749. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Alonso-Blanco C., Koornneef M. Naturally occurring variation in Arabidopsis: an underexploited resource for plant genetics. Trends Plant Sci. 2000 Jan;5(1):22–29. doi: 10.1016/s1360-1385(99)01510-1. [DOI] [PubMed] [Google Scholar]
  4. Bell C. J., Ecker J. R. Assignment of 30 microsatellite loci to the linkage map of Arabidopsis. Genomics. 1994 Jan 1;19(1):137–144. doi: 10.1006/geno.1994.1023. [DOI] [PubMed] [Google Scholar]
  5. Bentsink L., Alonso-Blanco C., Vreugdenhil D., Tesnier K., Groot S. P., Koornneef M. Genetic analysis of seed-soluble oligosaccharides in relation to seed storability of Arabidopsis. Plant Physiol. 2000 Dec;124(4):1595–1604. doi: 10.1104/pp.124.4.1595. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Berná G., Robles P., Micol J. L. A mutational analysis of leaf morphogenesis in Arabidopsis thaliana. Genetics. 1999 Jun;152(2):729–742. doi: 10.1093/genetics/152.2.729. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Boehnke M. Limits of resolution of genetic linkage studies: implications for the positional cloning of human disease genes. Am J Hum Genet. 1994 Aug;55(2):379–390. [PMC free article] [PubMed] [Google Scholar]
  8. Borevitz Justin O., Maloof Julin N., Lutes Jason, Dabi Tsegaye, Redfern Joanna L., Trainer Gabriel T., Werner Jonathan D., Asami Tadao, Berry Charles C., Weigel Detlef. Quantitative trait loci controlling light and hormone response in two accessions of Arabidopsis thaliana. Genetics. 2002 Feb;160(2):683–696. doi: 10.1093/genetics/160.2.683. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Bowcock A. M., Ruiz-Linares A., Tomfohrde J., Minch E., Kidd J. R., Cavalli-Sforza L. L. High resolution of human evolutionary trees with polymorphic microsatellites. Nature. 1994 Mar 31;368(6470):455–457. doi: 10.1038/368455a0. [DOI] [PubMed] [Google Scholar]
  10. Byrne M., Timmermans M., Kidner C., Martienssen R. Development of leaf shape. Curr Opin Plant Biol. 2001 Feb;4(1):38–43. doi: 10.1016/s1369-5266(00)00133-3. [DOI] [PubMed] [Google Scholar]
  11. Candela H., Martínez-Laborda A., Micol J. L. Venation pattern formation in Arabidopsis thaliana vegetative leaves. Dev Biol. 1999 Jan 1;205(1):205–216. doi: 10.1006/dbio.1998.9111. [DOI] [PubMed] [Google Scholar]
  12. Churchill G. A., Doerge R. W. Empirical threshold values for quantitative trait mapping. Genetics. 1994 Nov;138(3):963–971. doi: 10.1093/genetics/138.3.963. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Clarke J. H., Dean C. Mapping FRI, a locus controlling flowering time and vernalization response in Arabidopsis thaliana. Mol Gen Genet. 1994 Jan;242(1):81–89. doi: 10.1007/BF00277351. [DOI] [PubMed] [Google Scholar]
  14. Clarke J. H., Mithen R., Brown J. K., Dean C. QTL analysis of flowering time in Arabidopsis thaliana. Mol Gen Genet. 1995 Aug 21;248(3):278–286. doi: 10.1007/BF02191594. [DOI] [PubMed] [Google Scholar]
  15. Doerge R. W., Churchill G. A. Permutation tests for multiple loci affecting a quantitative character. Genetics. 1996 Jan;142(1):285–294. doi: 10.1093/genetics/142.1.285. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. El-Din El-Assal S., Alonso-Blanco C., Peeters A. J., Raz V., Koornneef M. A QTL for flowering time in Arabidopsis reveals a novel allele of CRY2. Nat Genet. 2001 Dec;29(4):435–440. doi: 10.1038/ng767. [DOI] [PubMed] [Google Scholar]
  17. Frary A., Nesbitt T. C., Grandillo S., Knaap E., Cong B., Liu J., Meller J., Elber R., Alpert K. B., Tanksley S. D. fw2.2: a quantitative trait locus key to the evolution of tomato fruit size. Science. 2000 Jul 7;289(5476):85–88. doi: 10.1126/science.289.5476.85. [DOI] [PubMed] [Google Scholar]
  18. Goldstein D. B., Ruiz Linares A., Cavalli-Sforza L. L., Feldman M. W. An evaluation of genetic distances for use with microsatellite loci. Genetics. 1995 Jan;139(1):463–471. doi: 10.1093/genetics/139.1.463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Goldstein D. B., Ruiz Linares A., Cavalli-Sforza L. L., Feldman M. W. Genetic absolute dating based on microsatellites and the origin of modern humans. Proc Natl Acad Sci U S A. 1995 Jul 18;92(15):6723–6727. doi: 10.1073/pnas.92.15.6723. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Goldstein D. B., Zhivotovsky L. A., Nayar K., Linares A. R., Cavalli-Sforza L. L., Feldman M. W. Statistical properties of the variation at linked microsatellite loci: implications for the history of human Y chromosomes. Mol Biol Evol. 1996 Nov;13(9):1213–1218. doi: 10.1093/oxfordjournals.molbev.a025686. [DOI] [PubMed] [Google Scholar]
  21. Grbić B., Bleecker A. B. An altered body plan is conferred on Arabidopsis plants carrying dominant alleles of two genes. Development. 1996 Aug;122(8):2395–2403. doi: 10.1242/dev.122.8.2395. [DOI] [PubMed] [Google Scholar]
  22. Hearne C. M., Ghosh S., Todd J. A. Microsatellites for linkage analysis of genetic traits. Trends Genet. 1992 Aug;8(8):288–294. doi: 10.1016/0168-9525(92)90256-4. [DOI] [PubMed] [Google Scholar]
  23. Innan H., Terauchi R., Miyashita N. T. Microsatellite polymorphism in natural populations of the wild plant Arabidopsis thaliana. Genetics. 1997 Aug;146(4):1441–1452. doi: 10.1093/genetics/146.4.1441. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Jansen R. C. Interval mapping of multiple quantitative trait loci. Genetics. 1993 Sep;135(1):205–211. doi: 10.1093/genetics/135.1.205. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Jansen R. C., Stam P. High resolution of quantitative traits into multiple loci via interval mapping. Genetics. 1994 Apr;136(4):1447–1455. doi: 10.1093/genetics/136.4.1447. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Juenger T., Purugganan M., Mackay T. F. Quantitative trait loci for floral morphology in Arabidopsis thaliana. Genetics. 2000 Nov;156(3):1379–1392. doi: 10.1093/genetics/156.3.1379. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Lander E. S., Botstein D. Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics. 1989 Jan;121(1):185–199. doi: 10.1093/genetics/121.1.185. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Larkin J. C., Young N., Prigge M., Marks M. D. The control of trichome spacing and number in Arabidopsis. Development. 1996 Mar;122(3):997–1005. doi: 10.1242/dev.122.3.997. [DOI] [PubMed] [Google Scholar]
  29. Lawson E. J., Poethig R. S. Shoot development in plants: time for a change. Trends Genet. 1995 Jul;11(7):263–268. doi: 10.1016/s0168-9525(00)89072-1. [DOI] [PubMed] [Google Scholar]
  30. Lee I., Bleecker A., Amasino R. Analysis of naturally occurring late flowering in Arabidopsis thaliana. Mol Gen Genet. 1993 Feb;237(1-2):171–176. doi: 10.1007/BF00282798. [DOI] [PubMed] [Google Scholar]
  31. Mackay T. F. The genetic architecture of quantitative traits. Annu Rev Genet. 2001;35:303–339. doi: 10.1146/annurev.genet.35.102401.090633. [DOI] [PubMed] [Google Scholar]
  32. Nei M. Analysis of gene diversity in subdivided populations. Proc Natl Acad Sci U S A. 1973 Dec;70(12):3321–3323. doi: 10.1073/pnas.70.12.3321. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Nordborg Magnus, Borevitz Justin O., Bergelson Joy, Berry Charles C., Chory Joanne, Hagenblad Jenny, Kreitman Martin, Maloof Julin N., Noyes Tina, Oefner Peter J. The extent of linkage disequilibrium in Arabidopsis thaliana. Nat Genet. 2002 Jan 7;30(2):190–193. doi: 10.1038/ng813. [DOI] [PubMed] [Google Scholar]
  34. Page R. D. TreeView: an application to display phylogenetic trees on personal computers. Comput Appl Biosci. 1996 Aug;12(4):357–358. doi: 10.1093/bioinformatics/12.4.357. [DOI] [PubMed] [Google Scholar]
  35. Poethig R. S. Leaf morphogenesis in flowering plants. Plant Cell. 1997 Jul;9(7):1077–1087. doi: 10.1105/tpc.9.7.1077. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Ponce M. R., Quesada V., Micol J. L. Rapid discrimination of sequences flanking and within T-DNA insertions in the Arabidopsis genome. Plant J. 1998 May;14(4):497–501. doi: 10.1046/j.1365-313x.1998.00146.x. [DOI] [PubMed] [Google Scholar]
  37. Ponce M. R., Robles P., Micol J. L. High-throughput genetic mapping in Arabidopsis thaliana. Mol Gen Genet. 1999 Mar;261(2):408–415. doi: 10.1007/s004380050982. [DOI] [PubMed] [Google Scholar]
  38. Robles P., Micol J. L. Genome-wide linkage analysis of Arabidopsis genes required for leaf development. Mol Genet Genomics. 2001 Sep;266(1):12–19. doi: 10.1007/s004380100535. [DOI] [PubMed] [Google Scholar]
  39. Sanda S., John M., Amasino R. Analysis of flowering time in ecotypes of Arabidopsis thaliana. J Hered. 1997 Jan-Feb;88(1):69–72. doi: 10.1093/oxfordjournals.jhered.a023061. [DOI] [PubMed] [Google Scholar]
  40. Scanlon M. J. Developmental complexities of simple leaves. Curr Opin Plant Biol. 2000 Feb;3(1):31–36. doi: 10.1016/s1369-5266(99)00040-0. [DOI] [PubMed] [Google Scholar]
  41. Serrano-Cartagena J., Candela H., Robles P., Ponce M. R., Pérez-Pérez J. M., Piqueras P., Micol J. L. Genetic analysis of incurvata mutants reveals three independent genetic operations at work in Arabidopsis leaf morphogenesis. Genetics. 2000 Nov;156(3):1363–1377. doi: 10.1093/genetics/156.3.1363. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Serrano-Cartagena J., Robles P., Ponce M. R., Micol J. L. Genetic analysis of leaf form mutants from the Arabidopsis Information Service collection. Mol Gen Genet. 1999 Jun;261(4-5):725–739. doi: 10.1007/s004380050016. [DOI] [PubMed] [Google Scholar]
  43. Sharbel T. F., Haubold B., Mitchell-Olds T. Genetic isolation by distance in Arabidopsis thaliana: biogeography and postglacial colonization of Europe. Mol Ecol. 2000 Dec;9(12):2109–2118. doi: 10.1046/j.1365-294x.2000.01122.x. [DOI] [PubMed] [Google Scholar]
  44. Smith L. G., Hake S. The Initiation and Determination of Leaves. Plant Cell. 1992 Sep;4(9):1017–1027. doi: 10.1105/tpc.4.9.1017. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Swarup K., Alonso-Blanco C., Lynn J. R., Michaels S. D., Amasino R. M., Koornneef M., Millar A. J. Natural allelic variation identifies new genes in the Arabidopsis circadian system. Plant J. 1999 Oct;20(1):67–77. doi: 10.1046/j.1365-313x.1999.00577.x. [DOI] [PubMed] [Google Scholar]
  46. Sylvester A. W., Smith L., Freeling M. Acquisition of identity in the developing leaf. Annu Rev Cell Dev Biol. 1996;12:257–304. doi: 10.1146/annurev.cellbio.12.1.257. [DOI] [PubMed] [Google Scholar]
  47. Tautz D. Hypervariability of simple sequences as a general source for polymorphic DNA markers. Nucleic Acids Res. 1989 Aug 25;17(16):6463–6471. doi: 10.1093/nar/17.16.6463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Torii K. U., Mitsukawa N., Oosumi T., Matsuura Y., Yokoyama R., Whittier R. F., Komeda Y. The Arabidopsis ERECTA gene encodes a putative receptor protein kinase with extracellular leucine-rich repeats. Plant Cell. 1996 Apr;8(4):735–746. doi: 10.1105/tpc.8.4.735. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Tsuge T., Tsukaya H., Uchimiya H. Two independent and polarized processes of cell elongation regulate leaf blade expansion in Arabidopsis thaliana (L.) Heynh. Development. 1996 May;122(5):1589–1600. doi: 10.1242/dev.122.5.1589. [DOI] [PubMed] [Google Scholar]
  50. Tsukaya H., Shoda K., Kim G. T., Uchimiya H. Heteroblasty in Arabidopsis thaliana (L.) Heynh. Planta. 2000 Mar;210(4):536–542. doi: 10.1007/s004250050042. [DOI] [PubMed] [Google Scholar]
  51. Tsukaya H., Uchimiya H. Genetic analyses of the formation of the serrated margin of leaf blades in Arabidopsis: combination of a mutational analysis of leaf morphogenesis with the characterization of a specific marker gene expressed in hydathodes and stipules. Mol Gen Genet. 1997 Oct;256(3):231–238. doi: 10.1007/s004380050565. [DOI] [PubMed] [Google Scholar]
  52. Ungerer Mark C., Halldorsdottir Solveig S., Modliszewski Jennifer L., Mackay Trudy F. C., Purugganan Michael D. Quantitative trait loci for inflorescence development in Arabidopsis thaliana. Genetics. 2002 Mar;160(3):1133–1151. doi: 10.1093/genetics/160.3.1133. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Weber J. L., May P. E. Abundant class of human DNA polymorphisms which can be typed using the polymerase chain reaction. Am J Hum Genet. 1989 Mar;44(3):388–396. [PMC free article] [PubMed] [Google Scholar]
  54. Yokoyama R., Takahashi T., Kato A., Torii K. U., Komeda Y. The Arabidopsis ERECTA gene is expressed in the shoot apical meristem and organ primordia. Plant J. 1998 Aug;15(3):301–310. doi: 10.1046/j.1365-313x.1998.00203.x. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES