Skip to main content
Genetics logoLink to Genetics
. 2002 Oct;162(2):851–860. doi: 10.1093/genetics/162.2.851

Population genetics of duplicated disease-defense genes, hm1 and hm2, in maize (Zea mays ssp. mays L.) and its wild ancestor (Zea mays ssp. parviglumis).

Liqing Zhang 1, Andrew S Peek 1, Detiger Dunams 1, Brandon S Gaut 1
PMCID: PMC1462307  PMID: 12399395

Abstract

Plant defense genes are subject to nonneutral evolutionary dynamics. Here we investigate the evolutionary dynamics of the duplicated defense genes hm1 and hm2 in maize and its wild ancestor Zea mays ssp. parviglumis. Both genes have been shown to confer resistance to the fungal pathogen Cochliobolus carbonum race 1, but the effectiveness of resistance differs between loci. The genes also display different population histories. The hm1 locus has the highest nucleotide diversity of any gene yet sampled in the wild ancestor of maize, and it contains a large number of indel polymorphisms. There is no evidence, however, that high diversity in hm1 is a product of nonneutral evolution. In contrast, hm2 has very low nucleotide diversity in the wild ancestor of maize. The distribution of hm2 polymorphic sites is consistent with nonneutral evolution, as indicated by Tajima's D and other neutrality tests. In addition, one hm2 haplotype is more frequent than expected under the equilibrium neutral model, suggesting hitchhiking selection. Both defense genes retain >80% of the level of genetic variation in maize relative to the wild ancestor, and this level is similar to other maize genes that were not subject to artificial selection during domestication.

Full Text

The Full Text of this article is available as a PDF (140.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bishop J. G., Dean A. M., Mitchell-Olds T. Rapid evolution in plant chitinases: molecular targets of selection in plant-pathogen coevolution. Proc Natl Acad Sci U S A. 2000 May 9;97(10):5322–5327. doi: 10.1073/pnas.97.10.5322. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Braverman J. M., Hudson R. R., Kaplan N. L., Langley C. H., Stephan W. The hitchhiking effect on the site frequency spectrum of DNA polymorphisms. Genetics. 1995 Jun;140(2):783–796. doi: 10.1093/genetics/140.2.783. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Buckler E. S., 4th, Thornsberry J. M., Kresovich S. Molecular diversity, structure and domestication of grasses. Genet Res. 2001 Jun;77(3):213–218. doi: 10.1017/s0016672301005158. [DOI] [PubMed] [Google Scholar]
  4. Caicedo A. L., Schaal B. A., Kunkel B. N. Diversity and molecular evolution of the RPS2 resistance gene in Arabidopsis thaliana. Proc Natl Acad Sci U S A. 1999 Jan 5;96(1):302–306. doi: 10.1073/pnas.96.1.302. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Depaulis F., Mousset S., Veuille M. Haplotype tests using coalescent simulations conditional on the number of segregating sites. Mol Biol Evol. 2001 Jun;18(6):1136–1138. doi: 10.1093/oxfordjournals.molbev.a003885. [DOI] [PubMed] [Google Scholar]
  6. Eyre-Walker A., Gaut R. L., Hilton H., Feldman D. L., Gaut B. S. Investigation of the bottleneck leading to the domestication of maize. Proc Natl Acad Sci U S A. 1998 Apr 14;95(8):4441–4446. doi: 10.1073/pnas.95.8.4441. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Fay J. C., Wu C. I. Hitchhiking under positive Darwinian selection. Genetics. 2000 Jul;155(3):1405–1413. doi: 10.1093/genetics/155.3.1405. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Fu Y. X., Li W. H. Statistical tests of neutrality of mutations. Genetics. 1993 Mar;133(3):693–709. doi: 10.1093/genetics/133.3.693. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Goloubinoff P., Päbo S., Wilson A. C. Evolution of maize inferred from sequence diversity of an Adh2 gene segment from archaeological specimens. Proc Natl Acad Sci U S A. 1993 Mar 1;90(5):1997–2001. doi: 10.1073/pnas.90.5.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hanson M. A., Gaut B. S., Stec A. O., Fuerstenberg S. I., Goodman M. M., Coe E. H., Doebley J. F. Evolution of anthocyanin biosynthesis in maize kernels: the role of regulatory and enzymatic loci. Genetics. 1996 Jul;143(3):1395–1407. doi: 10.1093/genetics/143.3.1395. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Henry A. M., Damerval C. High rates of polymorphism and recombination at the Opaque-2 locus in cultivated maize. Mol Gen Genet. 1997 Sep;256(2):147–157. doi: 10.1007/s004380050556. [DOI] [PubMed] [Google Scholar]
  12. Hilton H., Gaut B. S. Speciation and domestication in maize and its wild relatives: evidence from the globulin-1 gene. Genetics. 1998 Oct;150(2):863–872. doi: 10.1093/genetics/150.2.863. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hudson R. R., Bailey K., Skarecky D., Kwiatowski J., Ayala F. J. Evidence for positive selection in the superoxide dismutase (Sod) region of Drosophila melanogaster. Genetics. 1994 Apr;136(4):1329–1340. doi: 10.1093/genetics/136.4.1329. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hudson R. R., Kreitman M., Aguadé M. A test of neutral molecular evolution based on nucleotide data. Genetics. 1987 May;116(1):153–159. doi: 10.1093/genetics/116.1.153. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Iltis H. H. From teosinte to maize: the catastrophic sexual transmutation. Science. 1983 Nov 25;222(4626):886–894. doi: 10.1126/science.222.4626.886. [DOI] [PubMed] [Google Scholar]
  16. Johal G. S., Briggs S. P. Reductase activity encoded by the HM1 disease resistance gene in maize. Science. 1992 Nov 6;258(5084):985–987. doi: 10.1126/science.1359642. [DOI] [PubMed] [Google Scholar]
  17. Mason-Gamer R. J., Weil C. F., Kellogg E. A. Granule-bound starch synthase: structure, function, and phylogenetic utility. Mol Biol Evol. 1998 Dec;15(12):1658–1673. doi: 10.1093/oxfordjournals.molbev.a025893. [DOI] [PubMed] [Google Scholar]
  18. Matsuoka Y., Mitchell S. E., Kresovich S., Goodman M., Doebley J. Microsatellites in Zea - variability, patterns of mutations, and use for evolutionary studies. Theor Appl Genet. 2002 Feb;104(2-3):436–450. doi: 10.1007/s001220100694. [DOI] [PubMed] [Google Scholar]
  19. McDonald J. H. Improved tests for heterogeneity across a region of DNA sequence in the ratio of polymorphism to divergence. Mol Biol Evol. 1998 Apr;15(4):377–384. doi: 10.1093/oxfordjournals.molbev.a025934. [DOI] [PubMed] [Google Scholar]
  20. McDonald J. H., Kreitman M. Adaptive protein evolution at the Adh locus in Drosophila. Nature. 1991 Jun 20;351(6328):652–654. doi: 10.1038/351652a0. [DOI] [PubMed] [Google Scholar]
  21. Meyers B. C., Dickerman A. W., Michelmore R. W., Sivaramakrishnan S., Sobral B. W., Young N. D. Plant disease resistance genes encode members of an ancient and diverse protein family within the nucleotide-binding superfamily. Plant J. 1999 Nov;20(3):317–332. doi: 10.1046/j.1365-313x.1999.t01-1-00606.x. [DOI] [PubMed] [Google Scholar]
  22. Meyers B. C., Shen K. A., Rohani P., Gaut B. S., Michelmore R. W. Receptor-like genes in the major resistance locus of lettuce are subject to divergent selection. Plant Cell. 1998 Nov;10(11):1833–1846. doi: 10.1105/tpc.10.11.1833. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Michelmore R. W., Meyers B. C. Clusters of resistance genes in plants evolve by divergent selection and a birth-and-death process. Genome Res. 1998 Nov;8(11):1113–1130. doi: 10.1101/gr.8.11.1113. [DOI] [PubMed] [Google Scholar]
  24. Multani D. S., Meeley R. B., Paterson A. H., Gray J., Briggs S. P., Johal G. S. Plant-pathogen microevolution: molecular basis for the origin of a fungal disease in maize. Proc Natl Acad Sci U S A. 1998 Feb 17;95(4):1686–1691. doi: 10.1073/pnas.95.4.1686. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Parniske M., Hammond-Kosack K. E., Golstein C., Thomas C. M., Jones D. A., Harrison K., Wulff B. B., Jones J. D. Novel disease resistance specificities result from sequence exchange between tandemly repeated genes at the Cf-4/9 locus of tomato. Cell. 1997 Dec 12;91(6):821–832. doi: 10.1016/s0092-8674(00)80470-5. [DOI] [PubMed] [Google Scholar]
  26. Przeworski M., Hudson R. R., Di Rienzo A. Adjusting the focus on human variation. Trends Genet. 2000 Jul;16(7):296–302. doi: 10.1016/s0168-9525(00)02030-8. [DOI] [PubMed] [Google Scholar]
  27. Simonsen K. L., Churchill G. A., Aquadro C. F. Properties of statistical tests of neutrality for DNA polymorphism data. Genetics. 1995 Sep;141(1):413–429. doi: 10.1093/genetics/141.1.413. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Stahl E. A., Dwyer G., Mauricio R., Kreitman M., Bergelson J. Dynamics of disease resistance polymorphism at the Rpm1 locus of Arabidopsis. Nature. 1999 Aug 12;400(6745):667–671. doi: 10.1038/23260. [DOI] [PubMed] [Google Scholar]
  29. Tajima F. Evolutionary relationship of DNA sequences in finite populations. Genetics. 1983 Oct;105(2):437–460. doi: 10.1093/genetics/105.2.437. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Tajima F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics. 1989 Nov;123(3):585–595. doi: 10.1093/genetics/123.3.585. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Tenaillon M. I., Sawkins M. C., Long A. D., Gaut R. L., Doebley J. F., Gaut B. S. Patterns of DNA sequence polymorphism along chromosome 1 of maize (Zea mays ssp. mays L.). Proc Natl Acad Sci U S A. 2001 Jul 24;98(16):9161–9166. doi: 10.1073/pnas.151244298. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Tiffin P., Gaut B. S. Molecular evolution of the wound-induced serine protease inhibitor wip1 in Zea and related genera. Mol Biol Evol. 2001 Nov;18(11):2092–2101. doi: 10.1093/oxfordjournals.molbev.a003750. [DOI] [PubMed] [Google Scholar]
  33. Wang G. L., Ruan D. L., Song W. Y., Sideris S., Chen L., Pi L. Y., Zhang S., Zhang Z., Fauquet C., Gaut B. S. Xa21D encodes a receptor-like molecule with a leucine-rich repeat domain that determines race-specific recognition and is subject to adaptive evolution. Plant Cell. 1998 May;10(5):765–779. doi: 10.1105/tpc.10.5.765. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Wang R. L., Stec A., Hey J., Lukens L., Doebley J. The limits of selection during maize domestication. Nature. 1999 Mar 18;398(6724):236–239. doi: 10.1038/18435. [DOI] [PubMed] [Google Scholar]
  35. White S. E., Doebley J. F. The molecular evolution of terminal ear1, a regulatory gene in the genus Zea. Genetics. 1999 Nov;153(3):1455–1462. doi: 10.1093/genetics/153.3.1455. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES