Skip to main content
Genetics logoLink to Genetics
. 2002 Oct;162(2):647–662. doi: 10.1093/genetics/162.2.647

Mutations in homologous recombination genes rescue top3 slow growth in Saccharomyces cerevisiae.

Erika Shor 1, Serge Gangloff 1, Marisa Wagner 1, Justin Weinstein 1, Gavrielle Price 1, Rodney Rothstein 1
PMCID: PMC1462310  PMID: 12399378

Abstract

In budding yeast, loss of topoisomerase III, encoded by the TOP3 gene, leads to a genomic instability phenotype that includes slow growth, hyper-sensitivity to genotoxic agents, mitotic hyper-recombination, increased chromosome missegregation, and meiotic failure. Slow growth and other defects of top3 mutants are suppressed by mutation of SGS1, which encodes the only RecQ helicase in S. cerevisiae. sgs1 is epistatic to top3, suggesting that the two proteins act in the same pathway. To identify other factors that function in the Sgs1-Top3 pathway, we undertook a genetic screen for non-sgs1 suppressors of top3 defects. We found that slow growth and DNA damage sensitivity of top3 mutants are suppressed by mutations in RAD51, RAD54, RAD55, and RAD57. In contrast, top3 mutants show extreme synergistic growth defects with mutations in RAD50, MRE11, XRS2, RDH54, and RAD1. We also analyzed recombination at the SUP4-o region, showing that in a rad51, rad54, rad55, or rad57 background top3Delta does not increase recombination to the same degree as in a wild-type strain. These results suggest that the presence of the Rad51 homologous recombination complex in a top3 background facilitates creation of detrimental intermediates by Sgs1. We present a model wherein Rad51 helps recruit Sgs1-Top3 to sites of replicative damage.

Full Text

The Full Text of this article is available as a PDF (524.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aguilera A. Genetic evidence for different RAD52-dependent intrachromosomal recombination pathways in Saccharomyces cerevisiae. Curr Genet. 1995 Mar;27(4):298–305. doi: 10.1007/BF00352096. [DOI] [PubMed] [Google Scholar]
  2. Aravind L., Walker D. R., Koonin E. V. Conserved domains in DNA repair proteins and evolution of repair systems. Nucleic Acids Res. 1999 Mar 1;27(5):1223–1242. doi: 10.1093/nar/27.5.1223. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bai Y., Symington L. S. A Rad52 homolog is required for RAD51-independent mitotic recombination in Saccharomyces cerevisiae. Genes Dev. 1996 Aug 15;10(16):2025–2037. doi: 10.1101/gad.10.16.2025. [DOI] [PubMed] [Google Scholar]
  4. Bailis A. M., Arthur L., Rothstein R. Genome rearrangement in top3 mutants of Saccharomyces cerevisiae requires a functional RAD1 excision repair gene. Mol Cell Biol. 1992 Nov;12(11):4988–4993. doi: 10.1128/mcb.12.11.4988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bennett R. J., Keck J. L., Wang J. C. Binding specificity determines polarity of DNA unwinding by the Sgs1 protein of S. cerevisiae. J Mol Biol. 1999 Jun 4;289(2):235–248. doi: 10.1006/jmbi.1999.2739. [DOI] [PubMed] [Google Scholar]
  6. Bennett R. J., Noirot-Gros M. F., Wang J. C. Interaction between yeast sgs1 helicase and DNA topoisomerase III. J Biol Chem. 2000 Sep 1;275(35):26898–26905. doi: 10.1074/jbc.M003137200. [DOI] [PubMed] [Google Scholar]
  7. Champoux J. J. DNA topoisomerases: structure, function, and mechanism. Annu Rev Biochem. 2001;70:369–413. doi: 10.1146/annurev.biochem.70.1.369. [DOI] [PubMed] [Google Scholar]
  8. Chen C. Y., Graham J., Yan H. Evidence for a replication function of FFA-1, the Xenopus orthologue of Werner syndrome protein. J Cell Biol. 2001 Mar 5;152(5):985–996. doi: 10.1083/jcb.152.5.985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Chen L., Trujillo K., Ramos W., Sung P., Tomkinson A. E. Promotion of Dnl4-catalyzed DNA end-joining by the Rad50/Mre11/Xrs2 and Hdf1/Hdf2 complexes. Mol Cell. 2001 Nov;8(5):1105–1115. doi: 10.1016/s1097-2765(01)00388-4. [DOI] [PubMed] [Google Scholar]
  10. Chen Q., Ijpma A., Greider C. W. Two survivor pathways that allow growth in the absence of telomerase are generated by distinct telomere recombination events. Mol Cell Biol. 2001 Mar;21(5):1819–1827. doi: 10.1128/MCB.21.5.1819-1827.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Cho R. J., Campbell M. J., Winzeler E. A., Steinmetz L., Conway A., Wodicka L., Wolfsberg T. G., Gabrielian A. E., Landsman D., Lockhart D. J. A genome-wide transcriptional analysis of the mitotic cell cycle. Mol Cell. 1998 Jul;2(1):65–73. doi: 10.1016/s1097-2765(00)80114-8. [DOI] [PubMed] [Google Scholar]
  12. Constantinou A., Tarsounas M., Karow J. K., Brosh R. M., Bohr V. A., Hickson I. D., West S. C. Werner's syndrome protein (WRN) migrates Holliday junctions and co-localizes with RPA upon replication arrest. EMBO Rep. 2000 Jul;1(1):80–84. doi: 10.1093/embo-reports/kvd004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. D'Amours D., Jackson S. P. The yeast Xrs2 complex functions in S phase checkpoint regulation. Genes Dev. 2001 Sep 1;15(17):2238–2249. doi: 10.1101/gad.208701. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Duguet M., Jaxel C., Déclais A. C., Confalonieri F., Marsault J., Bouthier de la Tour C., Nadal M., Portemer C. Analyzing reverse gyrase activity. Methods Mol Biol. 2001;95:35–49. doi: 10.1385/1-59259-057-8:35. [DOI] [PubMed] [Google Scholar]
  15. Duguet M. When helicase and topoisomerase meet! J Cell Sci. 1997 Jun;110(Pt 12):1345–1350. doi: 10.1242/jcs.110.12.1345. [DOI] [PubMed] [Google Scholar]
  16. Déclais A. C., Marsault J., Confalonieri F., de La Tour C. B., Duguet M. Reverse gyrase, the two domains intimately cooperate to promote positive supercoiling. J Biol Chem. 2000 Jun 30;275(26):19498–19504. doi: 10.1074/jbc.M910091199. [DOI] [PubMed] [Google Scholar]
  17. Ellis N. A., Groden J., Ye T. Z., Straughen J., Lennon D. J., Ciocci S., Proytcheva M., German J. The Bloom's syndrome gene product is homologous to RecQ helicases. Cell. 1995 Nov 17;83(4):655–666. doi: 10.1016/0092-8674(95)90105-1. [DOI] [PubMed] [Google Scholar]
  18. Fishman-Lobell J., Haber J. E. Removal of nonhomologous DNA ends in double-strand break recombination: the role of the yeast ultraviolet repair gene RAD1. Science. 1992 Oct 16;258(5081):480–484. doi: 10.1126/science.1411547. [DOI] [PubMed] [Google Scholar]
  19. Fishman-Lobell J., Rudin N., Haber J. E. Two alternative pathways of double-strand break repair that are kinetically separable and independently modulated. Mol Cell Biol. 1992 Mar;12(3):1292–1303. doi: 10.1128/mcb.12.3.1292. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Frei C., Gasser S. M. The yeast Sgs1p helicase acts upstream of Rad53p in the DNA replication checkpoint and colocalizes with Rad53p in S-phase-specific foci. Genes Dev. 2000 Jan 1;14(1):81–96. [PMC free article] [PubMed] [Google Scholar]
  21. Fricke W. M., Kaliraman V., Brill S. J. Mapping the DNA topoisomerase III binding domain of the Sgs1 DNA helicase. J Biol Chem. 2000 Dec 20;276(12):8848–8855. doi: 10.1074/jbc.M009719200. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Gangloff S., McDonald J. P., Bendixen C., Arthur L., Rothstein R. The yeast type I topoisomerase Top3 interacts with Sgs1, a DNA helicase homolog: a potential eukaryotic reverse gyrase. Mol Cell Biol. 1994 Dec;14(12):8391–8398. doi: 10.1128/mcb.14.12.8391. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Gangloff S., Soustelle C., Fabre F. Homologous recombination is responsible for cell death in the absence of the Sgs1 and Srs2 helicases. Nat Genet. 2000 Jun;25(2):192–194. doi: 10.1038/76055. [DOI] [PubMed] [Google Scholar]
  24. Gangloff S., Zou H., Rothstein R. Gene conversion plays the major role in controlling the stability of large tandem repeats in yeast. EMBO J. 1996 Apr 1;15(7):1715–1725. [PMC free article] [PubMed] [Google Scholar]
  25. Gangloff S., de Massy B., Arthur L., Rothstein R., Fabre F. The essential role of yeast topoisomerase III in meiosis depends on recombination. EMBO J. 1999 Mar 15;18(6):1701–1711. doi: 10.1093/emboj/18.6.1701. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. German J. Bloom syndrome: a mendelian prototype of somatic mutational disease. Medicine (Baltimore) 1993 Nov;72(6):393–406. [PubMed] [Google Scholar]
  27. Goodwin A., Wang S. W., Toda T., Norbury C., Hickson I. D. Topoisomerase III is essential for accurate nuclear division in Schizosaccharomyces pombe. Nucleic Acids Res. 1999 Oct 15;27(20):4050–4058. doi: 10.1093/nar/27.20.4050. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Gray M. D., Shen J. C., Kamath-Loeb A. S., Blank A., Sopher B. L., Martin G. M., Oshima J., Loeb L. A. The Werner syndrome protein is a DNA helicase. Nat Genet. 1997 Sep;17(1):100–103. doi: 10.1038/ng0997-100. [DOI] [PubMed] [Google Scholar]
  29. Grenon M., Gilbert C., Lowndes N. F. Checkpoint activation in response to double-strand breaks requires the Mre11/Rad50/Xrs2 complex. Nat Cell Biol. 2001 Sep;3(9):844–847. doi: 10.1038/ncb0901-844. [DOI] [PubMed] [Google Scholar]
  30. Haber J. E. The many interfaces of Mre11. Cell. 1998 Nov 25;95(5):583–586. doi: 10.1016/s0092-8674(00)81626-8. [DOI] [PubMed] [Google Scholar]
  31. Harmon F. G., DiGate R. J., Kowalczykowski S. C. RecQ helicase and topoisomerase III comprise a novel DNA strand passage function: a conserved mechanism for control of DNA recombination. Mol Cell. 1999 May;3(5):611–620. doi: 10.1016/s1097-2765(00)80354-8. [DOI] [PubMed] [Google Scholar]
  32. Ivanov E. L., Haber J. E. RAD1 and RAD10, but not other excision repair genes, are required for double-strand break-induced recombination in Saccharomyces cerevisiae. Mol Cell Biol. 1995 Apr;15(4):2245–2251. doi: 10.1128/mcb.15.4.2245. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Ivanov E. L., Sugawara N., Fishman-Lobell J., Haber J. E. Genetic requirements for the single-strand annealing pathway of double-strand break repair in Saccharomyces cerevisiae. Genetics. 1996 Mar;142(3):693–704. doi: 10.1093/genetics/142.3.693. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Kaliraman V., Mullen J. R., Fricke W. M., Bastin-Shanower S. A., Brill S. J. Functional overlap between Sgs1-Top3 and the Mms4-Mus81 endonuclease. Genes Dev. 2001 Oct 15;15(20):2730–2740. doi: 10.1101/gad.932201. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Karow J. K., Constantinou A., Li J. L., West S. C., Hickson I. D. The Bloom's syndrome gene product promotes branch migration of holliday junctions. Proc Natl Acad Sci U S A. 2000 Jun 6;97(12):6504–6508. doi: 10.1073/pnas.100448097. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Klapholz S., Esposito R. E. A new mapping method employing a meiotic rec-mutant of yeast. Genetics. 1982 Mar;100(3):387–412. doi: 10.1093/genetics/100.3.387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Klein H. L. RDH54, a RAD54 homologue in Saccharomyces cerevisiae, is required for mitotic diploid-specific recombination and repair and for meiosis. Genetics. 1997 Dec;147(4):1533–1543. doi: 10.1093/genetics/147.4.1533. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Kwan K. Y., Wang J. C. Mice lacking DNA topoisomerase IIIbeta develop to maturity but show a reduced mean lifespan. Proc Natl Acad Sci U S A. 2001 May 1;98(10):5717–5721. doi: 10.1073/pnas.101132498. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Lawrence C. W. Classical mutagenesis techniques. Methods Enzymol. 1991;194:273–281. doi: 10.1016/0076-6879(91)94021-4. [DOI] [PubMed] [Google Scholar]
  40. Lee S. E., Moore J. K., Holmes A., Umezu K., Kolodner R. D., Haber J. E. Saccharomyces Ku70, mre11/rad50 and RPA proteins regulate adaptation to G2/M arrest after DNA damage. Cell. 1998 Aug 7;94(3):399–409. doi: 10.1016/s0092-8674(00)81482-8. [DOI] [PubMed] [Google Scholar]
  41. Lee S. E., Pellicioli A., Malkova A., Foiani M., Haber J. E. The Saccharomyces recombination protein Tid1p is required for adaptation from G2/M arrest induced by a double-strand break. Curr Biol. 2001 Jul 10;11(13):1053–1057. doi: 10.1016/s0960-9822(01)00296-2. [DOI] [PubMed] [Google Scholar]
  42. Lewis L. K., Resnick M. A. Tying up loose ends: nonhomologous end-joining in Saccharomyces cerevisiae. Mutat Res. 2000 Jun 30;451(1-2):71–89. doi: 10.1016/s0027-5107(00)00041-5. [DOI] [PubMed] [Google Scholar]
  43. Liao S., Graham J., Yan H. The function of Xenopus Bloom's syndrome protein homolog (xBLM) in DNA replication. Genes Dev. 2000 Oct 15;14(20):2570–2575. doi: 10.1101/gad.822400. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Lindor N. M., Furuichi Y., Kitao S., Shimamoto A., Arndt C., Jalal S. Rothmund-Thomson syndrome due to RECQ4 helicase mutations: report and clinical and molecular comparisons with Bloom syndrome and Werner syndrome. Am J Med Genet. 2000 Jan 31;90(3):223–228. doi: 10.1002/(sici)1096-8628(20000131)90:3<223::aid-ajmg7>3.0.co;2-z. [DOI] [PubMed] [Google Scholar]
  45. McDonald J. P., Rothstein R. Unrepaired heteroduplex DNA in Saccharomyces cerevisiae is decreased in RAD1 RAD52-independent recombination. Genetics. 1994 Jun;137(2):393–405. doi: 10.1093/genetics/137.2.393. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. McVey M., Kaeberlein M., Tissenbaum H. A., Guarente L. The short life span of Saccharomyces cerevisiae sgs1 and srs2 mutants is a composite of normal aging processes and mitotic arrest due to defective recombination. Genetics. 2001 Apr;157(4):1531–1542. doi: 10.1093/genetics/157.4.1531. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Mullen J. R., Kaliraman V., Brill S. J. Bipartite structure of the SGS1 DNA helicase in Saccharomyces cerevisiae. Genetics. 2000 Mar;154(3):1101–1114. doi: 10.1093/genetics/154.3.1101. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Murray J. M., Lindsay H. D., Munday C. A., Carr A. M. Role of Schizosaccharomyces pombe RecQ homolog, recombination, and checkpoint genes in UV damage tolerance. Mol Cell Biol. 1997 Dec;17(12):6868–6875. doi: 10.1128/mcb.17.12.6868. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Nehlin J. O., Skovgaard G. L., Bohr V. A. The Werner syndrome. A model for the study of human aging. Ann N Y Acad Sci. 2000 Jun;908:167–179. doi: 10.1111/j.1749-6632.2000.tb06645.x. [DOI] [PubMed] [Google Scholar]
  50. Oakley Thomas J., Goodwin Adele, Chakraverty Ronjon K., Hickson Ian D. Inactivation of homologous recombination suppresses defects in topoisomerase III-deficient mutants. DNA Repair (Amst) 2002 Jun 21;1(6):463–482. doi: 10.1016/s1568-7864(02)00032-0. [DOI] [PubMed] [Google Scholar]
  51. Prince P. R., Emond M. J., Monnat R. J., Jr Loss of Werner syndrome protein function promotes aberrant mitotic recombination. Genes Dev. 2001 Apr 15;15(8):933–938. doi: 10.1101/gad.877001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Pâques F., Haber J. E. Multiple pathways of recombination induced by double-strand breaks in Saccharomyces cerevisiae. Microbiol Mol Biol Rev. 1999 Jun;63(2):349–404. doi: 10.1128/mmbr.63.2.349-404.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Rothstein R., Michel B., Gangloff S. Replication fork pausing and recombination or "gimme a break". Genes Dev. 2000 Jan 1;14(1):1–10. [PubMed] [Google Scholar]
  54. Sakamoto S., Nishikawa K., Heo S. J., Goto M., Furuichi Y., Shimamoto A. Werner helicase relocates into nuclear foci in response to DNA damaging agents and co-localizes with RPA and Rad51. Genes Cells. 2001 May;6(5):421–430. doi: 10.1046/j.1365-2443.2001.00433.x. [DOI] [PubMed] [Google Scholar]
  55. Shen J. C., Loeb L. A. The Werner syndrome gene: the molecular basis of RecQ helicase-deficiency diseases. Trends Genet. 2000 May;16(5):213–220. doi: 10.1016/s0168-9525(99)01970-8. [DOI] [PubMed] [Google Scholar]
  56. Shinohara M., Gasior S. L., Bishop D. K., Shinohara A. Tid1/Rdh54 promotes colocalization of rad51 and dmc1 during meiotic recombination. Proc Natl Acad Sci U S A. 2000 Sep 26;97(20):10814–10819. doi: 10.1073/pnas.97.20.10814. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Signon L., Malkova A., Naylor M. L., Klein H., Haber J. E. Genetic requirements for RAD51- and RAD54-independent break-induced replication repair of a chromosomal double-strand break. Mol Cell Biol. 2001 Mar;21(6):2048–2056. doi: 10.1128/MCB.21.6.2048-2056.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Sinclair D. A., Mills K., Guarente L. Accelerated aging and nucleolar fragmentation in yeast sgs1 mutants. Science. 1997 Aug 29;277(5330):1313–1316. doi: 10.1126/science.277.5330.1313. [DOI] [PubMed] [Google Scholar]
  59. Stewart E., Chapman C. R., Al-Khodairy F., Carr A. M., Enoch T. rqh1+, a fission yeast gene related to the Bloom's and Werner's syndrome genes, is required for reversible S phase arrest. EMBO J. 1997 May 15;16(10):2682–2692. doi: 10.1093/emboj/16.10.2682. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. Sung P., Trujillo K. M., Van Komen S. Recombination factors of Saccharomyces cerevisiae. Mutat Res. 2000 Jun 30;451(1-2):257–275. doi: 10.1016/s0027-5107(00)00054-3. [DOI] [PubMed] [Google Scholar]
  61. Thomas B. J., Rothstein R. Elevated recombination rates in transcriptionally active DNA. Cell. 1989 Feb 24;56(4):619–630. doi: 10.1016/0092-8674(89)90584-9. [DOI] [PubMed] [Google Scholar]
  62. Wallis J. W., Chrebet G., Brodsky G., Rolfe M., Rothstein R. A hyper-recombination mutation in S. cerevisiae identifies a novel eukaryotic topoisomerase. Cell. 1989 Jul 28;58(2):409–419. doi: 10.1016/0092-8674(89)90855-6. [DOI] [PubMed] [Google Scholar]
  63. Watt P. M., Louis E. J., Borts R. H., Hickson I. D. Sgs1: a eukaryotic homolog of E. coli RecQ that interacts with topoisomerase II in vivo and is required for faithful chromosome segregation. Cell. 1995 Apr 21;81(2):253–260. doi: 10.1016/0092-8674(95)90335-6. [DOI] [PubMed] [Google Scholar]
  64. Wu L., Davies S. L., Levitt N. C., Hickson I. D. Potential role for the BLM helicase in recombinational repair via a conserved interaction with RAD51. J Biol Chem. 2001 Feb 8;276(22):19375–19381. doi: 10.1074/jbc.M009471200. [DOI] [PubMed] [Google Scholar]
  65. Wu L., Davies S. L., North P. S., Goulaouic H., Riou J. F., Turley H., Gatter K. C., Hickson I. D. The Bloom's syndrome gene product interacts with topoisomerase III. J Biol Chem. 2000 Mar 31;275(13):9636–9644. doi: 10.1074/jbc.275.13.9636. [DOI] [PubMed] [Google Scholar]
  66. Wu L., Karow J. K., Hickson I. D. Genetic recombination: Helicases and topoisomerases link up. Curr Biol. 1999 Jul 15;9(14):R518–R520. doi: 10.1016/s0960-9822(99)80325-x. [DOI] [PubMed] [Google Scholar]
  67. Zou H., Rothstein R. Holliday junctions accumulate in replication mutants via a RecA homolog-independent mechanism. Cell. 1997 Jul 11;90(1):87–96. doi: 10.1016/s0092-8674(00)80316-5. [DOI] [PubMed] [Google Scholar]
  68. van Brabant A. J., Stan R., Ellis N. A. DNA helicases, genomic instability, and human genetic disease. Annu Rev Genomics Hum Genet. 2000;1:409–459. doi: 10.1146/annurev.genom.1.1.409. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES