Skip to main content
Genetics logoLink to Genetics
. 2002 Nov;162(3):1487–1500. doi: 10.1093/genetics/162.3.1487

Estimation of deleterious genomic mutation parameters in natural populations by accounting for variable mutation effects across loci.

Hong-Wen Deng 1, Guimin Gao 1, Jin-Long Li 1
PMCID: PMC1462319  PMID: 12454090

Abstract

The genomes of all organisms are subject to continuous bombardment of deleterious genomic mutations (DGM). Our ability to accurately estimate various parameters of DGM has profound significance in population and evolutionary genetics. The Deng-Lynch method can estimate the parameters of DGM in natural selfing and outcrossing populations. This method assumes constant fitness effects of DGM and hence is biased under variable fitness effects of DGM. Here, we develop a statistical method to estimate DGM parameters by considering variable mutation effects across loci. Under variable mutation effects, the mean fitness and genetic variance for fitness of parental and progeny generations across selfing/outcrossing in outcrossing/selfing populations and the covariance between mean fitness of parents and that of their progeny are functions of DGM parameters: the genomic mutation rate U, average homozygous effect s, average dominance coefficient h, and covariance of selection and dominance coefficients cov(h, s). The DGM parameters can be estimated by the algorithms we developed herein, which may yield improved estimation of DGM parameters over the Deng-Lynch method as demonstrated by our simulation studies. Importantly, this method is the first one to characterize cov(h, s) for DGM.

Full Text

The Full Text of this article is available as a PDF (140.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Craddock N., Khodel V., Van Eerdewegh P., Reich T. Mathematical limits of multilocus models: the genetic transmission of bipolar disorder. Am J Hum Genet. 1995 Sep;57(3):690–702. [PMC free article] [PubMed] [Google Scholar]
  2. Crow J. F. How much do we know about spontaneous human mutation rates? Environ Mol Mutagen. 1993;21(2):122–129. doi: 10.1002/em.2850210205. [DOI] [PubMed] [Google Scholar]
  3. Crow J. F. Spontaneous mutation as a risk factor. Exp Clin Immunogenet. 1995;12(3):121–128. doi: 10.1159/000424865. [DOI] [PubMed] [Google Scholar]
  4. Deng H. W. Characterization of deleterious mutations in outcrossing populations. Genetics. 1998 Oct;150(2):945–956. doi: 10.1093/genetics/150.2.945. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Deng H. W. Estimating within-locus nonadditive coefficient and discriminating dominance versus overdominance as the genetic cause of heterosis. Genetics. 1998 Apr;148(4):2003–2014. doi: 10.1093/genetics/148.4.2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Deng H. W., Fu Y. X., Lynch M. Inferring the major genomic mode of dominance and overdominance. Genetica. 1998;102-103(1-6):559–567. [PubMed] [Google Scholar]
  7. Deng H. W., Fu Y. X. On the three methods for estimating deleterious genomic mutation parameters. Genet Res. 1998 Jun;71(3):223–236. doi: 10.1017/s0016672398003255. [DOI] [PubMed] [Google Scholar]
  8. Deng H. W., Li J., Li J. L. On the experimental design and data analysis of mutation accumulation experiments. Genet Res. 1999 Apr;73(2):147–164. doi: 10.1017/s0016672398003681. [DOI] [PubMed] [Google Scholar]
  9. Deng H. W., Lynch M. Estimation of deleterious-mutation parameters in natural populations. Genetics. 1996 Sep;144(1):349–360. doi: 10.1093/genetics/144.1.349. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Deng H. W., Lynch M. Inbreeding depression and inferred deleterious-mutation parameters in Daphnia. Genetics. 1997 Sep;147(1):147–155. doi: 10.1093/genetics/147.1.147. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Drake J. W., Charlesworth B., Charlesworth D., Crow J. F. Rates of spontaneous mutation. Genetics. 1998 Apr;148(4):1667–1686. doi: 10.1093/genetics/148.4.1667. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Fu Y. B., Ritland K. Marker-based inferences about epistasis for genes influencing inbreeding depression. Genetics. 1996 Sep;144(1):339–348. doi: 10.1093/genetics/144.1.339. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Houle D. Allozyme-associated heterosis in Drosophila melanogaster. Genetics. 1989 Dec;123(4):789–801. doi: 10.1093/genetics/123.4.789. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Houle D., Morikawa B., Lynch M. Comparing mutational variabilities. Genetics. 1996 Jul;143(3):1467–1483. doi: 10.1093/genetics/143.3.1467. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kacser H., Burns J. A. The molecular basis of dominance. Genetics. 1981 Mar-Apr;97(3-4):639–666. doi: 10.1093/genetics/97.3-4.639. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Keightley P. D. Inference of genome-wide mutation rates and distributions of mutation effects for fitness traits: a simulation study. Genetics. 1998 Nov;150(3):1283–1293. doi: 10.1093/genetics/150.3.1283. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Keightley P. D. Nature of deleterious mutation load in Drosophila. Genetics. 1996 Dec;144(4):1993–1999. doi: 10.1093/genetics/144.4.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Keightley P. D. The distribution of mutation effects on viability in Drosophila melanogaster. Genetics. 1994 Dec;138(4):1315–1322. doi: 10.1093/genetics/138.4.1315. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Kondrashov A. S. Deleterious mutations and the evolution of sexual reproduction. Nature. 1988 Dec 1;336(6198):435–440. doi: 10.1038/336435a0. [DOI] [PubMed] [Google Scholar]
  20. Li J., Deng H. W. Estimation of parameters of deleterious mutations in partial selfing or partial outcrossing populations and in nonequilibrium populations. Genetics. 2000 Apr;154(4):1893–1906. doi: 10.1093/genetics/154.4.1893. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Mackay T. F., Lyman R. F., Jackson M. S. Effects of P element insertions on quantitative traits in Drosophila melanogaster. Genetics. 1992 Feb;130(2):315–332. doi: 10.1093/genetics/130.2.315. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Mukai T., Chigusa S. I., Mettler L. E., Crow J. F. Mutation rate and dominance of genes affecting viability in Drosophila melanogaster. Genetics. 1972 Oct;72(2):335–355. doi: 10.1093/genetics/72.2.335. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Simmons M. J., Crow J. F. Mutations affecting fitness in Drosophila populations. Annu Rev Genet. 1977;11:49–78. doi: 10.1146/annurev.ge.11.120177.000405. [DOI] [PubMed] [Google Scholar]
  24. Turelli M., Orr H. A. The dominance theory of Haldane's rule. Genetics. 1995 May;140(1):389–402. doi: 10.1093/genetics/140.1.389. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES