Skip to main content
Genetics logoLink to Genetics
. 2002 Nov;162(3):1245–1258. doi: 10.1093/genetics/162.3.1245

The Y chromosome of Drosophila melanogaster exhibits chromosome-wide imprinting.

Keith A Maggert 1, Kent G Golic 1
PMCID: PMC1462351  PMID: 12454070

Abstract

Genomic imprinting is well known as a regulatory property of a few specific chromosomal regions and leads to differential behavior of maternally and paternally inherited alleles. We surveyed the activity of two reporter genes in 23 independent P-element insertions on the heterochromatic Y chromosome of Drosophila melanogaster and found that all but one location showed differential expression of one or both genes according to the parental source of the chromosome. In contrast, genes inserted in autosomal heterochromatin generally did not show imprint-regulated expression. The imprints were established on Y-linked transgenes inserted into many different sequences and locations. We conclude that genomic imprinting affecting gene expression is a general property of the Drosophila Y chromosome and distinguishes the Y from the autosomal complement.

Full Text

The Full Text of this article is available as a PDF (622.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Agudo M., Losada A., Abad J. P., Pimpinelli S., Ripoll P., Villasante A. Centromeres from telomeres? The centromeric region of the Y chromosome of Drosophila melanogaster contains a tandem array of telomeric HeT-A- and TART-related sequences. Nucleic Acids Res. 1999 Aug 15;27(16):3318–3324. doi: 10.1093/nar/27.16.3318. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Ahmad K., Henikoff S. Modulation of a transcription factor counteracts heterochromatic gene silencing in Drosophila. Cell. 2001 Mar 23;104(6):839–847. doi: 10.1016/s0092-8674(01)00281-1. [DOI] [PubMed] [Google Scholar]
  3. Alleman M., Doctor J. Genomic imprinting in plants: observations and evolutionary implications. Plant Mol Biol. 2000 Jun;43(2-3):147–161. doi: 10.1023/a:1006419025155. [DOI] [PubMed] [Google Scholar]
  4. Barlow D. P. Gametic imprinting in mammals. Science. 1995 Dec 8;270(5242):1610–1613. doi: 10.1126/science.270.5242.1610. [DOI] [PubMed] [Google Scholar]
  5. Beechey C. V. Appendix: imprinted genes and regions in mouse and human. Results Probl Cell Differ. 1999;25:303–323. [PubMed] [Google Scholar]
  6. Bestor T. H. Sex brings transposons and genomes into conflict. Genetica. 1999;107(1-3):289–295. [PubMed] [Google Scholar]
  7. Brenton J. D., Drewell R. A., Viville S., Hilton K. J., Barton S. C., Ainscough J. F., Surani M. A. A silencer element identified in Drosophila is required for imprinting of H19 reporter transgenes in mice. Proc Natl Acad Sci U S A. 1999 Aug 3;96(16):9242–9247. doi: 10.1073/pnas.96.16.9242. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Bridges C B. Non-Disjunction as Proof of the Chromosome Theory of Heredity. Genetics. 1916 Jan;1(1):1–52. doi: 10.1093/genetics/1.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Carrel L., Willard H. F. Heterogeneous gene expression from the inactive X chromosome: an X-linked gene that escapes X inactivation in some human cell lines but is inactivated in others. Proc Natl Acad Sci U S A. 1999 Jun 22;96(13):7364–7369. doi: 10.1073/pnas.96.13.7364. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Cavalli G., Paro R. The Drosophila Fab-7 chromosomal element conveys epigenetic inheritance during mitosis and meiosis. Cell. 1998 May 15;93(4):505–518. doi: 10.1016/s0092-8674(00)81181-2. [DOI] [PubMed] [Google Scholar]
  11. Charlier C., Segers K., Wagenaar D., Karim L., Berghmans S., Jaillon O., Shay T., Weissenbach J., Cockett N., Gyapay G. Human-ovine comparative sequencing of a 250-kb imprinted domain encompassing the callipyge (clpg) locus and identification of six imprinted transcripts: DLK1, DAT, GTL2, PEG11, antiPEG11, and MEG8. Genome Res. 2001 May;11(5):850–862. doi: 10.1101/gr.172701. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Danilevskaya O., Lofsky A., Kurenova E. V., Pardue M. L. The Y chromosome of Drosophila melanogaster contains a distinctive subclass of Het-A-related repeats. Genetics. 1993 Jun;134(2):531–543. doi: 10.1093/genetics/134.2.531. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Dean W., Santos F., Stojkovic M., Zakhartchenko V., Walter J., Wolf E., Reik W. Conservation of methylation reprogramming in mammalian development: aberrant reprogramming in cloned embryos. Proc Natl Acad Sci U S A. 2001 Nov 20;98(24):13734–13738. doi: 10.1073/pnas.241522698. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Dobie K. W., Kennedy C. D., Velasco V. M., McGrath T. L., Weko J., Patterson R. W., Karpen G. H. Identification of chromosome inheritance modifiers in Drosophila melanogaster. Genetics. 2001 Apr;157(4):1623–1637. doi: 10.1093/genetics/157.4.1623. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Dorn R., Krauss V., Reuter G., Saumweber H. The enhancer of position-effect variegation of Drosophila, E(var)3-93D, codes for a chromatin protein containing a conserved domain common to several transcriptional regulators. Proc Natl Acad Sci U S A. 1993 Dec 1;90(23):11376–11380. doi: 10.1073/pnas.90.23.11376. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Ganguly R., Swanson K. D., Ray K., Krishnan R. A BamHI repeat element is predominantly associated with the degenerating neo-Y chromosome of Drosophila miranda but absent in the Drosophila melanogaster genome. Proc Natl Acad Sci U S A. 1992 Feb 15;89(4):1340–1344. doi: 10.1073/pnas.89.4.1340. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Gatti M., Pimpinelli S. Functional elements in Drosophila melanogaster heterochromatin. Annu Rev Genet. 1992;26:239–275. doi: 10.1146/annurev.ge.26.120192.001323. [DOI] [PubMed] [Google Scholar]
  18. Gibbons R. J., McDowell T. L., Raman S., O'Rourke D. M., Garrick D., Ayyub H., Higgs D. R. Mutations in ATRX, encoding a SWI/SNF-like protein, cause diverse changes in the pattern of DNA methylation. Nat Genet. 2000 Apr;24(4):368–371. doi: 10.1038/74191. [DOI] [PubMed] [Google Scholar]
  19. Golic K. G., Golic M. M., Pimpinelli S. Imprinted control of gene activity in Drosophila. Curr Biol. 1998 Nov 19;8(23):1273–1276. doi: 10.1016/s0960-9822(07)00537-4. [DOI] [PubMed] [Google Scholar]
  20. Hall J. G. How imprinting is relevant to human disease. Dev Suppl. 1990:141–148. [PubMed] [Google Scholar]
  21. Hazelrigg T., Levis R., Rubin G. M. Transformation of white locus DNA in drosophila: dosage compensation, zeste interaction, and position effects. Cell. 1984 Feb;36(2):469–481. doi: 10.1016/0092-8674(84)90240-x. [DOI] [PubMed] [Google Scholar]
  22. Jinno Y., Yun K., Nishiwaki K., Kubota T., Ogawa O., Reeve A. E., Niikawa N. Mosaic and polymorphic imprinting of the WT1 gene in humans. Nat Genet. 1994 Mar;6(3):305–309. doi: 10.1038/ng0394-305. [DOI] [PubMed] [Google Scholar]
  23. Jones B. K., Levorse J. M., Tilghman S. M. Igf2 imprinting does not require its own DNA methylation or H19 RNA. Genes Dev. 1998 Jul 15;12(14):2200–2207. doi: 10.1101/gad.12.14.2200. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Jouvenot Y., Poirier F., Jami J., Paldi A. Biallelic transcription of Igf2 and H19 in individual cells suggests a post-transcriptional contribution to genomic imprinting. Curr Biol. 1999 Oct 21;9(20):1199–1202. doi: 10.1016/S0960-9822(00)80026-3. [DOI] [PubMed] [Google Scholar]
  25. Junakovic N., Terrinoni A., Di Franco C., Vieira C., Loevenbruck C. Accumulation of transposable elements in the heterochromatin and on the Y chromosome of Drosophila simulans and Drosophila melanogaster. J Mol Evol. 1998 Jun;46(6):661–668. doi: 10.1007/pl00006346. [DOI] [PubMed] [Google Scholar]
  26. Kaffer C. R., Srivastava M., Park K. Y., Ives E., Hsieh S., Batlle J., Grinberg A., Huang S. P., Pfeifer K. A transcriptional insulator at the imprinted H19/Igf2 locus. Genes Dev. 2000 Aug 1;14(15):1908–1919. [PMC free article] [PubMed] [Google Scholar]
  27. Kelley R. L., Meller V. H., Gordadze P. R., Roman G., Davis R. L., Kuroda M. I. Epigenetic spreading of the Drosophila dosage compensation complex from roX RNA genes into flanking chromatin. Cell. 1999 Aug 20;98(4):513–522. doi: 10.1016/s0092-8674(00)81979-0. [DOI] [PubMed] [Google Scholar]
  28. Koski L. B., Sasaki E., Roberts R. D., Gibson J., Etches R. J. Monoalleleic transcription of the insulin-like growth factor-II gene (Igf2) in chick embryos. Mol Reprod Dev. 2000 Jul;56(3):345–352. doi: 10.1002/1098-2795(200007)56:3<345::AID-MRD3>3.0.CO;2-1. [DOI] [PubMed] [Google Scholar]
  29. Lee J. T., Strauss W. M., Dausman J. A., Jaenisch R. A 450 kb transgene displays properties of the mammalian X-inactivation center. Cell. 1996 Jul 12;86(1):83–94. doi: 10.1016/s0092-8674(00)80079-3. [DOI] [PubMed] [Google Scholar]
  30. Lindsley D. L., Grell E. H. Spermiogenesis without chromosomes in Drosophila melanogaster. Genetics. 1969;61(1 Suppl):69–78. [PubMed] [Google Scholar]
  31. Lloyd V. K., Sinclair D. A., Grigliatti T. A. Genomic imprinting and position-effect variegation in Drosophila melanogaster. Genetics. 1999 Apr;151(4):1503–1516. doi: 10.1093/genetics/151.4.1503. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Lloyd V. Parental imprinting in Drosophila. Genetica. 2000;109(1-2):35–44. doi: 10.1023/a:1026592318341. [DOI] [PubMed] [Google Scholar]
  33. Maggert K. A., Karpen G. H. The activation of a neocentromere in Drosophila requires proximity to an endogenous centromere. Genetics. 2001 Aug;158(4):1615–1628. doi: 10.1093/genetics/158.4.1615. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Messing J., Grossniklaus U. Genomic imprinting in plants. Results Probl Cell Differ. 1999;25:23–40. doi: 10.1007/978-3-540-69111-2_2. [DOI] [PubMed] [Google Scholar]
  35. Mizuno Yosuke, Sotomaru Yusuke, Katsuzawa Yukiko, Kono Tomohiro, Meguro Makiko, Oshimura Mitsuo, Kawai Jun, Tomaru Yasuhiro, Kiyosawa Hidenori, Nikaido Itoshi. Asb4, Ata3, and Dcn are novel imprinted genes identified by high-throughput screening using RIKEN cDNA microarray. Biochem Biophys Res Commun. 2002 Feb 8;290(5):1499–1505. doi: 10.1006/bbrc.2002.6370. [DOI] [PubMed] [Google Scholar]
  36. Pfeifer K. Mechanisms of genomic imprinting. Am J Hum Genet. 2000 Sep 5;67(4):777–787. doi: 10.1086/303101. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Reik W., Dean W., Walter J. Epigenetic reprogramming in mammalian development. Science. 2001 Aug 10;293(5532):1089–1093. doi: 10.1126/science.1063443. [DOI] [PubMed] [Google Scholar]
  38. Ripoche M. A., Kress C., Poirier F., Dandolo L. Deletion of the H19 transcription unit reveals the existence of a putative imprinting control element. Genes Dev. 1997 Jun 15;11(12):1596–1604. doi: 10.1101/gad.11.12.1596. [DOI] [PubMed] [Google Scholar]
  39. Rong Yikang S., Titen Simon W., Xie Heng B., Golic Mary M., Bastiani Michael, Bandyopadhyay Pradip, Olivera Baldomero M., Brodsky Michael, Rubin Gerald M., Golic Kent G. Targeted mutagenesis by homologous recombination in D. melanogaster. Genes Dev. 2002 Jun 15;16(12):1568–1581. doi: 10.1101/gad.986602. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Roseman R. R., Johnson E. A., Rodesch C. K., Bjerke M., Nagoshi R. N., Geyer P. K. A P element containing suppressor of hairy-wing binding regions has novel properties for mutagenesis in Drosophila melanogaster. Genetics. 1995 Nov;141(3):1061–1074. doi: 10.1093/genetics/141.3.1061. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Sano Y., Shimada T., Nakashima H., Nicholson R. H., Eliason J. F., Kocarek T. A., Ko M. S. Random monoallelic expression of three genes clustered within 60 kb of mouse t complex genomic DNA. Genome Res. 2001 Nov;11(11):1833–1841. doi: 10.1101/gr.194301. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Sequeira W., Nelson C. R., Szauter P. Genetic analysis of the claret locus of Drosophila melanogaster. Genetics. 1989 Nov;123(3):511–524. doi: 10.1093/genetics/123.3.511. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Spielman M., Vinkenoog R., Dickinson H. G., Scott R. J. The epigenetic basis of gender in flowering plants and mammals. Trends Genet. 2001 Dec;17(12):705–711. doi: 10.1016/s0168-9525(01)02519-7. [DOI] [PubMed] [Google Scholar]
  44. Steinemann M., Steinemann S. Common mechanisms of Y chromosome evolution. Genetica. 2000;109(1-2):105–111. doi: 10.1023/a:1026584016524. [DOI] [PubMed] [Google Scholar]
  45. Tilghman S. M. The sins of the fathers and mothers: genomic imprinting in mammalian development. Cell. 1999 Jan 22;96(2):185–193. doi: 10.1016/s0092-8674(00)80559-0. [DOI] [PubMed] [Google Scholar]
  46. Wylie A. A., Murphy S. K., Orton T. C., Jirtle R. L. Novel imprinted DLK1/GTL2 domain on human chromosome 14 contains motifs that mimic those implicated in IGF2/H19 regulation. Genome Res. 2000 Nov;10(11):1711–1718. doi: 10.1101/gr.161600. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Xu Y., Goodyer C. G., Deal C., Polychronakos C. Functional polymorphism in the parental imprinting of the human IGF2R gene. Biochem Biophys Res Commun. 1993 Dec 15;197(2):747–754. doi: 10.1006/bbrc.1993.2542. [DOI] [PubMed] [Google Scholar]
  48. Yan Christopher M., Dobie Kenneth W., Le Hiep D., Konev Alexander Y., Karpen Gary H. Efficient recovery of centric heterochromatin P-element insertions in Drosophila melanogaster. Genetics. 2002 May;161(1):217–229. doi: 10.1093/genetics/161.1.217. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Zhang P., Hawley R. S. The genetic analysis of distributive segregation in Drosophila melanogaster. II. Further genetic analysis of the nod locus. Genetics. 1990 May;125(1):115–127. doi: 10.1093/genetics/125.1.115. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES