Skip to main content
Genetics logoLink to Genetics
. 2002 Dec;162(4):1703–1724. doi: 10.1093/genetics/162.4.1703

The fruitless gene is required for the proper formation of axonal tracts in the embryonic central nervous system of Drosophila.

Ho-Juhn Song 1, Jean-Christophe Billeter 1, Enrique Reynaud 1, Troy Carlo 1, Eric P Spana 1, Norbert Perrimon 1, Stephen F Goodwin 1, Bruce S Baker 1, Barbara J Taylor 1
PMCID: PMC1462372  PMID: 12524343

Abstract

The fruitless (fru) gene in Drosophila melanogaster is a multifunctional gene that has sex-specific functions in the regulation of male sexual behavior and sex-nonspecific functions affecting adult viability and external morphology. While much attention has focused on fru's sex-specific roles, less is known about its sex-nonspecific functions. We have examined fru's sex-nonspecific role in embryonic neural development. fru transcripts from sex-nonspecific promoters are expressed beginning at the earliest stages of neurogenesis, and Fru proteins are present in both neurons and glia. In embryos that lack most or all fru function, FasII- and BP102-positive axons have defasciculation defects and grow along abnormal pathways in the CNS. These defects in axonal projections in fru mutants were rescued by the expression of specific UAS-fru transgenes under the control of a pan-neuronal scabrous-GAL4 driver. Our results suggest that one of fru's sex-nonspecific roles is to regulate the pathfinding ability of axons in the embryonic CNS.

Full Text

The Full Text of this article is available as a PDF (840.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anand A., Villella A., Ryner L. C., Carlo T., Goodwin S. F., Song H. J., Gailey D. A., Morales A., Hall J. C., Baker B. S. Molecular genetic dissection of the sex-specific and vital functions of the Drosophila melanogaster sex determination gene fruitless. Genetics. 2001 Aug;158(4):1569–1595. doi: 10.1093/genetics/158.4.1569. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bainbridge S. P., Bownes M. Staging the metamorphosis of Drosophila melanogaster. J Embryol Exp Morphol. 1981 Dec;66:57–80. [PubMed] [Google Scholar]
  3. Bayer C. A., von Kalm L., Fristrom J. W. Relationships between protein isoforms and genetic functions demonstrate functional redundancy at the Broad-Complex during Drosophila metamorphosis. Dev Biol. 1997 Jul 15;187(2):267–282. doi: 10.1006/dbio.1997.8620. [DOI] [PubMed] [Google Scholar]
  4. Broadus J., Doe C. Q. Evolution of neuroblast identity: seven-up and prospero expression reveal homologous and divergent neuroblast fates in Drosophila and Schistocerca. Development. 1995 Dec;121(12):3989–3996. doi: 10.1242/dev.121.12.3989. [DOI] [PubMed] [Google Scholar]
  5. Broadus J., Skeath J. B., Spana E. P., Bossing T., Technau G., Doe C. Q. New neuroblast markers and the origin of the aCC/pCC neurons in the Drosophila central nervous system. Mech Dev. 1995 Nov;53(3):393–402. doi: 10.1016/0925-4773(95)00454-8. [DOI] [PubMed] [Google Scholar]
  6. Campbell G., Göring H., Lin T., Spana E., Andersson S., Doe C. Q., Tomlinson A. RK2, a glial-specific homeodomain protein required for embryonic nerve cord condensation and viability in Drosophila. Development. 1994 Oct;120(10):2957–2966. doi: 10.1242/dev.120.10.2957. [DOI] [PubMed] [Google Scholar]
  7. Castrillon D. H., Gönczy P., Alexander S., Rawson R., Eberhart C. G., Viswanathan S., DiNardo S., Wasserman S. A. Toward a molecular genetic analysis of spermatogenesis in Drosophila melanogaster: characterization of male-sterile mutants generated by single P element mutagenesis. Genetics. 1993 Oct;135(2):489–505. doi: 10.1093/genetics/135.2.489. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. DiBello P. R., Withers D. A., Bayer C. A., Fristrom J. W., Guild G. M. The Drosophila Broad-Complex encodes a family of related proteins containing zinc fingers. Genetics. 1991 Oct;129(2):385–397. doi: 10.1093/genetics/129.2.385. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Freeman M., Klämbt C., Goodman C. S., Rubin G. M. The argos gene encodes a diffusible factor that regulates cell fate decisions in the Drosophila eye. Cell. 1992 Jun 12;69(6):963–975. doi: 10.1016/0092-8674(92)90615-j. [DOI] [PubMed] [Google Scholar]
  10. Giesen K., Hummel T., Stollewerk A., Harrison S., Travers A., Klämbt C. Glial development in the Drosophila CNS requires concomitant activation of glial and repression of neuronal differentiation genes. Development. 1997 Jun;124(12):2307–2316. doi: 10.1242/dev.124.12.2307. [DOI] [PubMed] [Google Scholar]
  11. Giniger E., Tietje K., Jan L. Y., Jan Y. N. lola encodes a putative transcription factor required for axon growth and guidance in Drosophila. Development. 1994 Jun;120(6):1385–1398. doi: 10.1242/dev.120.6.1385. [DOI] [PubMed] [Google Scholar]
  12. Goodman C. S. Mechanisms and molecules that control growth cone guidance. Annu Rev Neurosci. 1996;19:341–377. doi: 10.1146/annurev.ne.19.030196.002013. [DOI] [PubMed] [Google Scholar]
  13. Goodwin S. F., Taylor B. J., Villella A., Foss M., Ryner L. C., Baker B. S., Hall J. C. Aberrant splicing and altered spatial expression patterns in fruitless mutants of Drosophila melanogaster. Genetics. 2000 Feb;154(2):725–745. doi: 10.1093/genetics/154.2.725. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Granderath S., Klämbt C. Glia development in the embryonic CNS of Drosophila. Curr Opin Neurobiol. 1999 Oct;9(5):531–536. doi: 10.1016/S0959-4388(99)00008-2. [DOI] [PubMed] [Google Scholar]
  15. Grenningloh G., Rehm E. J., Goodman C. S. Genetic analysis of growth cone guidance in Drosophila: fasciclin II functions as a neuronal recognition molecule. Cell. 1991 Oct 4;67(1):45–57. doi: 10.1016/0092-8674(91)90571-f. [DOI] [PubMed] [Google Scholar]
  16. Guthrie S. Axon guidance: starting and stopping with slit. Curr Biol. 1999 Jun 17;9(12):R432–R435. doi: 10.1016/s0960-9822(99)80274-7. [DOI] [PubMed] [Google Scholar]
  17. Halter D. A., Urban J., Rickert C., Ner S. S., Ito K., Travers A. A., Technau G. M. The homeobox gene repo is required for the differentiation and maintenance of glia function in the embryonic nervous system of Drosophila melanogaster. Development. 1995 Feb;121(2):317–332. doi: 10.1242/dev.121.2.317. [DOI] [PubMed] [Google Scholar]
  18. Heinrichs V., Ryner L. C., Baker B. S. Regulation of sex-specific selection of fruitless 5' splice sites by transformer and transformer-2. Mol Cell Biol. 1998 Jan;18(1):450–458. doi: 10.1128/mcb.18.1.450. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Hidalgo A., Brand A. H. Targeted neuronal ablation: the role of pioneer neurons in guidance and fasciculation in the CNS of Drosophila. Development. 1997 Sep;124(17):3253–3262. doi: 10.1242/dev.124.17.3253. [DOI] [PubMed] [Google Scholar]
  20. Hosoya T., Takizawa K., Nitta K., Hotta Y. glial cells missing: a binary switch between neuronal and glial determination in Drosophila. Cell. 1995 Sep 22;82(6):1025–1036. doi: 10.1016/0092-8674(95)90281-3. [DOI] [PubMed] [Google Scholar]
  21. Hummel T., Krukkert K., Roos J., Davis G., Klämbt C. Drosophila Futsch/22C10 is a MAP1B-like protein required for dendritic and axonal development. Neuron. 2000 May;26(2):357–370. doi: 10.1016/s0896-6273(00)81169-1. [DOI] [PubMed] [Google Scholar]
  22. Hummel T., Schimmelpfeng K., Klämbt C. Commissure formation in the embryonic CNS of Drosophila. Development. 1999 Feb;126(4):771–779. doi: 10.1242/dev.126.4.771. [DOI] [PubMed] [Google Scholar]
  23. Ito H., Fujitani K., Usui K., Shimizu-Nishikawa K., Tanaka S., Yamamoto D. Sexual orientation in Drosophila is altered by the satori mutation in the sex-determination gene fruitless that encodes a zinc finger protein with a BTB domain. Proc Natl Acad Sci U S A. 1996 Sep 3;93(18):9687–9692. doi: 10.1073/pnas.93.18.9687. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Jacobs J. R. The midline glia of Drosophila: a molecular genetic model for the developmental functions of glia. Prog Neurobiol. 2000 Dec;62(5):475–508. doi: 10.1016/s0301-0082(00)00016-2. [DOI] [PubMed] [Google Scholar]
  25. Jones B. W., Fetter R. D., Tear G., Goodman C. S. glial cells missing: a genetic switch that controls glial versus neuronal fate. Cell. 1995 Sep 22;82(6):1013–1023. doi: 10.1016/0092-8674(95)90280-5. [DOI] [PubMed] [Google Scholar]
  26. Klaes A., Menne T., Stollewerk A., Scholz H., Klämbt C. The Ets transcription factors encoded by the Drosophila gene pointed direct glial cell differentiation in the embryonic CNS. Cell. 1994 Jul 15;78(1):149–160. doi: 10.1016/0092-8674(94)90581-9. [DOI] [PubMed] [Google Scholar]
  27. Krueger N. X., Van Vactor D., Wan H. I., Gelbart W. M., Goodman C. S., Saito H. The transmembrane tyrosine phosphatase DLAR controls motor axon guidance in Drosophila. Cell. 1996 Feb 23;84(4):611–622. doi: 10.1016/s0092-8674(00)81036-3. [DOI] [PubMed] [Google Scholar]
  28. Lee G., Foss M., Goodwin S. F., Carlo T., Taylor B. J., Hall J. C. Spatial, temporal, and sexually dimorphic expression patterns of the fruitless gene in the Drosophila central nervous system. J Neurobiol. 2000 Jun 15;43(4):404–426. doi: 10.1002/1097-4695(20000615)43:4<404::aid-neu8>3.0.co;2-d. [DOI] [PubMed] [Google Scholar]
  29. Lee G., Villella A., Taylor B. J., Hall J. C. New reproductive anomalies in fruitless-mutant Drosophila males: extreme lengthening of mating durations and infertility correlated with defective serotonergic innervation of reproductive organs. J Neurobiol. 2001 May;47(2):121–149. doi: 10.1002/neu.1021. [DOI] [PubMed] [Google Scholar]
  30. Lin D. M., Goodman C. S. Ectopic and increased expression of Fasciclin II alters motoneuron growth cone guidance. Neuron. 1994 Sep;13(3):507–523. doi: 10.1016/0896-6273(94)90022-1. [DOI] [PubMed] [Google Scholar]
  31. Mueller F. O., O'Neill P., Trevor-Roper P. D., Beiter H., Ludek R. Fresh and frozen human full-thickness corneal grafts in Ethiopia. Br Med J. 1966 Jul 2;2(5504):17–20. doi: 10.1136/bmj.2.5504.17. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Patel N. H., Martin-Blanco E., Coleman K. G., Poole S. J., Ellis M. C., Kornberg T. B., Goodman C. S. Expression of engrailed proteins in arthropods, annelids, and chordates. Cell. 1989 Sep 8;58(5):955–968. doi: 10.1016/0092-8674(89)90947-1. [DOI] [PubMed] [Google Scholar]
  33. Restifo L. L., Hauglum W. Parallel molecular genetic pathways operate during CNS metamorphosis in Drosophila. Mol Cell Neurosci. 1998 Jun;11(3):134–148. doi: 10.1006/mcne.1998.0683. [DOI] [PubMed] [Google Scholar]
  34. Restifo L. L., Merrill V. K. Two Drosophila regulatory genes, deformed and the Broad-Complex, share common functions in development of adult CNS, head, and salivary glands. Dev Biol. 1994 Apr;162(2):465–485. doi: 10.1006/dbio.1994.1102. [DOI] [PubMed] [Google Scholar]
  35. Robertson H. M., Preston C. R., Phillis R. W., Johnson-Schlitz D. M., Benz W. K., Engels W. R. A stable genomic source of P element transposase in Drosophila melanogaster. Genetics. 1988 Mar;118(3):461–470. doi: 10.1093/genetics/118.3.461. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Rusch J., Van Vactor D. New Roundabouts send axons into the Fas lane. Neuron. 2000 Dec;28(3):637–640. doi: 10.1016/s0896-6273(00)00143-4. [DOI] [PubMed] [Google Scholar]
  37. Ryner L. C., Goodwin S. F., Castrillon D. H., Anand A., Villella A., Baker B. S., Hall J. C., Taylor B. J., Wasserman S. A. Control of male sexual behavior and sexual orientation in Drosophila by the fruitless gene. Cell. 1996 Dec 13;87(6):1079–1089. doi: 10.1016/s0092-8674(00)81802-4. [DOI] [PubMed] [Google Scholar]
  38. Sandstrom D. J., Bayer C. A., Fristrom J. W., Restifo L. L. Broad-complex transcription factors regulate thoracic muscle attachment in Drosophila. Dev Biol. 1997 Jan 15;181(2):168–185. doi: 10.1006/dbio.1996.8469. [DOI] [PubMed] [Google Scholar]
  39. Scholz H., Sadlowski E., Klaes A., Klämbt C. Control of midline glia development in the embryonic Drosophila CNS. Mech Dev. 1997 Jun;64(1-2):137–151. doi: 10.1016/s0925-4773(97)00078-6. [DOI] [PubMed] [Google Scholar]
  40. Seeger M., Tear G., Ferres-Marco D., Goodman C. S. Mutations affecting growth cone guidance in Drosophila: genes necessary for guidance toward or away from the midline. Neuron. 1993 Mar;10(3):409–426. doi: 10.1016/0896-6273(93)90330-t. [DOI] [PubMed] [Google Scholar]
  41. Spana E. P., Doe C. Q. Numb antagonizes Notch signaling to specify sibling neuron cell fates. Neuron. 1996 Jul;17(1):21–26. doi: 10.1016/s0896-6273(00)80277-9. [DOI] [PubMed] [Google Scholar]
  42. Spana E. P., Doe C. Q. The prospero transcription factor is asymmetrically localized to the cell cortex during neuroblast mitosis in Drosophila. Development. 1995 Oct;121(10):3187–3195. doi: 10.1242/dev.121.10.3187. [DOI] [PubMed] [Google Scholar]
  43. Spana E. P., Kopczynski C., Goodman C. S., Doe C. Q. Asymmetric localization of numb autonomously determines sibling neuron identity in the Drosophila CNS. Development. 1995 Nov;121(11):3489–3494. doi: 10.1242/dev.121.11.3489. [DOI] [PubMed] [Google Scholar]
  44. Spradling A. C., Stern D., Beaton A., Rhem E. J., Laverty T., Mozden N., Misra S., Rubin G. M. The Berkeley Drosophila Genome Project gene disruption project: Single P-element insertions mutating 25% of vital Drosophila genes. Genetics. 1999 Sep;153(1):135–177. doi: 10.1093/genetics/153.1.135. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Sun Q., Bahri S., Schmid A., Chia W., Zinn K. Receptor tyrosine phosphatases regulate axon guidance across the midline of the Drosophila embryo. Development. 2000 Feb;127(4):801–812. doi: 10.1242/dev.127.4.801. [DOI] [PubMed] [Google Scholar]
  46. Tear G. Neuronal guidance. A genetic perspective. Trends Genet. 1999 Mar;15(3):113–118. doi: 10.1016/s0168-9525(98)01686-2. [DOI] [PubMed] [Google Scholar]
  47. Usui-Aoki K., Ito H., Ui-Tei K., Takahashi K., Lukacsovich T., Awano W., Nakata H., Piao Z. F., Nilsson E. E., Tomida J. Formation of the male-specific muscle in female Drosophila by ectopic fruitless expression. Nat Cell Biol. 2000 Aug;2(8):500–506. doi: 10.1038/35019537. [DOI] [PubMed] [Google Scholar]
  48. Villella A., Gailey D. A., Berwald B., Ohshima S., Barnes P. T., Hall J. C. Extended reproductive roles of the fruitless gene in Drosophila melanogaster revealed by behavioral analysis of new fru mutants. Genetics. 1997 Nov;147(3):1107–1130. doi: 10.1093/genetics/147.3.1107. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Xiong W. C., Okano H., Patel N. H., Blendy J. A., Montell C. repo encodes a glial-specific homeo domain protein required in the Drosophila nervous system. Genes Dev. 1994 Apr 15;8(8):981–994. doi: 10.1101/gad.8.8.981. [DOI] [PubMed] [Google Scholar]
  50. Zollman S., Godt D., Privé G. G., Couderc J. L., Laski F. A. The BTB domain, found primarily in zinc finger proteins, defines an evolutionarily conserved family that includes several developmentally regulated genes in Drosophila. Proc Natl Acad Sci U S A. 1994 Oct 25;91(22):10717–10721. doi: 10.1073/pnas.91.22.10717. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES