Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1996 Nov 1;24(21):4327–4335. doi: 10.1093/nar/24.21.4327

Sequences within and flanking hypersensitive sites 3 and 2 of the beta-globin locus control region required for synergistic versus additive interaction with the epsilon-globin gene promoter.

J D Jackson 1, W Miller 1, R C Hardison 1
PMCID: PMC146243  PMID: 8932390

Abstract

The locus control region is required for high-level, position-independent expression of mammalian beta-globin genes. It is marked by five major DNase hypersensitive sites (HSs) in a 16 kb region of chromatin, and the protein-DNA complexes that form these HSs may interact in a holocomplex that carries out the full function of the locus control region. Previous studies showed that a large rabbit DNA fragment containing both HS2 and HS3 in their native sequence context and spacing produced a much larger increase in expression of a linked reporter gene than the sum of the largest effects observed with DNA fragments containing HS2 or HS3 individually. To test whether this reflected a synergistic interaction between the 200-400 bp cores of the HSs or if this effect required additional sequences outside the cores, combinations of different restriction fragments containing HS2 or HS3 were tested for their ability to increase the expression of a hybrid epsilon-globin-luciferase reporter gene in transfected K562 cells. The results show that the human HS2 and HS3 cores do not interact either additively or synergistically with the reporter gene when juxtaposed, and separation by spacer DNA has little effect on their function. Fragments of human DNA containing cores plus flanking sequences for HS3 or HS2 show an additive effect in combination, whereas homologous fragments of rabbit DNA containing HS3 and HS2 interact synergistically. At least part of this difference localizes to the rabbit DNA fragment containing HS3, which can interact synergistically with the human DNA fragment containing HS2. The region 5' to the HS3 core plays a role both in the cooperative interaction observed with the rabbit DNA fragment and the domain-opening observed with the human DNA. A minor DNase HS maps to this region, and the pattern of sequence conservation is consistent with some difference in function between species.

Full Text

The Full Text of this article is available as a PDF (157.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Caterina J. J., Ciavatta D. J., Donze D., Behringer R. R., Townes T. M. Multiple elements in human beta-globin locus control region 5' HS 2 are involved in enhancer activity and position-independent, transgene expression. Nucleic Acids Res. 1994 Mar 25;22(6):1006–1011. doi: 10.1093/nar/22.6.1006. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Caterina J. J., Ryan T. M., Pawlik K. M., Palmiter R. D., Brinster R. L., Behringer R. R., Townes T. M. Human beta-globin locus control region: analysis of the 5' DNase I hypersensitive site HS 2 in transgenic mice. Proc Natl Acad Sci U S A. 1991 Mar 1;88(5):1626–1630. doi: 10.1073/pnas.88.5.1626. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Collis P., Antoniou M., Grosveld F. Definition of the minimal requirements within the human beta-globin gene and the dominant control region for high level expression. EMBO J. 1990 Jan;9(1):233–240. doi: 10.1002/j.1460-2075.1990.tb08100.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Dhar V., Nandi A., Schildkraut C. L., Skoultchi A. I. Erythroid-specific nuclease-hypersensitive sites flanking the human beta-globin domain. Mol Cell Biol. 1990 Aug;10(8):4324–4333. doi: 10.1128/mcb.10.8.4324. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Ellis J., Tan-Un K. C., Harper A., Michalovich D., Yannoutsos N., Philipsen S., Grosveld F. A dominant chromatin-opening activity in 5' hypersensitive site 3 of the human beta-globin locus control region. EMBO J. 1996 Feb 1;15(3):562–568. [PMC free article] [PubMed] [Google Scholar]
  6. Forrester W. C., Epner E., Driscoll M. C., Enver T., Brice M., Papayannopoulou T., Groudine M. A deletion of the human beta-globin locus activation region causes a major alteration in chromatin structure and replication across the entire beta-globin locus. Genes Dev. 1990 Oct;4(10):1637–1649. doi: 10.1101/gad.4.10.1637. [DOI] [PubMed] [Google Scholar]
  7. Forrester W. C., Novak U., Gelinas R., Groudine M. Molecular analysis of the human beta-globin locus activation region. Proc Natl Acad Sci U S A. 1989 Jul;86(14):5439–5443. doi: 10.1073/pnas.86.14.5439. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Forrester W. C., Thompson C., Elder J. T., Groudine M. A developmentally stable chromatin structure in the human beta-globin gene cluster. Proc Natl Acad Sci U S A. 1986 Mar;83(5):1359–1363. doi: 10.1073/pnas.83.5.1359. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Grosveld F., Antoniou M., Berry M., De Boer E., Dillon N., Ellis J., Fraser P., Hanscombe O., Hurst J., Imam A. The regulation of human globin gene switching. Philos Trans R Soc Lond B Biol Sci. 1993 Feb 27;339(1288):183–191. doi: 10.1098/rstb.1993.0015. [DOI] [PubMed] [Google Scholar]
  10. Grosveld F., van Assendelft G. B., Greaves D. R., Kollias G. Position-independent, high-level expression of the human beta-globin gene in transgenic mice. Cell. 1987 Dec 24;51(6):975–985. doi: 10.1016/0092-8674(87)90584-8. [DOI] [PubMed] [Google Scholar]
  11. Gumucio D. L., Shelton D. A., Blanchard-McQuate K., Gray T., Tarle S., Heilstedt-Williamson H., Slightom J. L., Collins F., Goodman M. Differential phylogenetic footprinting as a means to identify base changes responsible for recruitment of the anthropoid gamma gene to a fetal expression pattern. J Biol Chem. 1994 May 27;269(21):15371–15380. [PubMed] [Google Scholar]
  12. Hardison R., Chao K. M., Adamkiewicz M., Price D., Jackson J., Zeigler T., Stojanovic N., Miller W. Positive and negative regulatory elements of the rabbit embryonic epsilon-globin gene revealed by an improved multiple alignment program and functional analysis. DNA Seq. 1993;4(3):163–176. doi: 10.3109/10425179309015629. [DOI] [PubMed] [Google Scholar]
  13. Hardison R., Xu J., Jackson J., Mansberger J., Selifonova O., Grotch B., Biesecker J., Petrykowska H., Miller W. Comparative analysis of the locus control region of the rabbit beta-like gene cluster: HS3 increases transient expression of an embryonic epsilon-globin gene. Nucleic Acids Res. 1993 Mar 11;21(5):1265–1272. doi: 10.1093/nar/21.5.1265. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hug B. A., Moon A. M., Ley T. J. Structure and function of the murine beta-globin locus control region 5' HS-3. Nucleic Acids Res. 1992 Nov 11;20(21):5771–5778. doi: 10.1093/nar/20.21.5771. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Jackson J. D., Petrykowska H., Philipsen S., Miller W., Hardison R. Role of DNA sequences outside the cores of DNase hypersensitive sites (HSs) in functions of the beta-globin locus control region. Domain opening and synergism between HS2 and HS3. J Biol Chem. 1996 May 17;271(20):11871–11878. doi: 10.1074/jbc.271.20.11871. [DOI] [PubMed] [Google Scholar]
  16. Jarman A. P., Higgs D. R. Nuclear scaffold attachment sites in the human globin gene complexes. EMBO J. 1988 Nov;7(11):3337–3344. doi: 10.1002/j.1460-2075.1988.tb03205.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Jiménez G., Gale K. B., Enver T. The mouse beta-globin locus control region: hypersensitive sites 3 and 4. Nucleic Acids Res. 1992 Nov 11;20(21):5797–5803. doi: 10.1093/nar/20.21.5797. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Kulozik A. E., Bail S., Bellan-Koch A., Bartram C. R., Kohne E., Kleihauer E. The proximal element of the beta globin locus control region is not functionally required in vivo. J Clin Invest. 1991 Jun;87(6):2142–2146. doi: 10.1172/JCI115246. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Li Q. L., Zhou B., Powers P., Enver T., Stamatoyannopoulos G. Beta-globin locus activation regions: conservation of organization, structure, and function. Proc Natl Acad Sci U S A. 1990 Nov;87(21):8207–8211. doi: 10.1073/pnas.87.21.8207. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Li Q., Stamatoyannopoulos G. Hypersensitive site 5 of the human beta locus control region functions as a chromatin insulator. Blood. 1994 Sep 1;84(5):1399–1401. [PubMed] [Google Scholar]
  21. Liu D., Chang J. C., Moi P., Liu W., Kan Y. W., Curtin P. T. Dissection of the enhancer activity of beta-globin 5' DNase I-hypersensitive site 2 in transgenic mice. Proc Natl Acad Sci U S A. 1992 May 1;89(9):3899–3903. doi: 10.1073/pnas.89.9.3899. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Lowrey C. H., Bodine D. M., Nienhuis A. W. Mechanism of DNase I hypersensitive site formation within the human globin locus control region. Proc Natl Acad Sci U S A. 1992 Feb 1;89(3):1143–1147. doi: 10.1073/pnas.89.3.1143. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Moon A. M., Ley T. J. Conservation of the primary structure, organization, and function of the human and mouse beta-globin locus-activating regions. Proc Natl Acad Sci U S A. 1990 Oct;87(19):7693–7697. doi: 10.1073/pnas.87.19.7693. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Moon A. M., Ley T. J. Functional properties of the beta-globin locus control region in K562 erythroleukemia cells. Blood. 1991 May 15;77(10):2272–2284. [PubMed] [Google Scholar]
  25. Ney P. A., Sorrentino B. P., McDonagh K. T., Nienhuis A. W. Tandem AP-1-binding sites within the human beta-globin dominant control region function as an inducible enhancer in erythroid cells. Genes Dev. 1990 Jun;4(6):993–1006. doi: 10.1101/gad.4.6.993. [DOI] [PubMed] [Google Scholar]
  26. Philipsen S., Talbot D., Fraser P., Grosveld F. The beta-globin dominant control region: hypersensitive site 2. EMBO J. 1990 Jul;9(7):2159–2167. doi: 10.1002/j.1460-2075.1990.tb07385.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Pruzina S., Antoniou M., Hurst J., Grosveld F., Philipsen S. Transcriptional activation by hypersensitive site three of the human beta-globin locus control region in murine erythroleukemia cells. Biochim Biophys Acta. 1994 Oct 18;1219(2):351–360. doi: 10.1016/0167-4781(94)90059-0. [DOI] [PubMed] [Google Scholar]
  28. Pruzina S., Hanscombe O., Whyatt D., Grosveld F., Philipsen S. Hypersensitive site 4 of the human beta globin locus control region. Nucleic Acids Res. 1991 Apr 11;19(7):1413–1419. doi: 10.1093/nar/19.7.1413. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Sadelain M., Wang C. H., Antoniou M., Grosveld F., Mulligan R. C. Generation of a high-titer retroviral vector capable of expressing high levels of the human beta-globin gene. Proc Natl Acad Sci U S A. 1995 Jul 18;92(15):6728–6732. doi: 10.1073/pnas.92.15.6728. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Sorrentino B., Ney P., Bodine D., Nienhius A. W. A 46 base pair enhancer sequence within the locus activating region is required for induced expression of the gamma-globin gene during erythroid differentiation. Nucleic Acids Res. 1990 May 11;18(9):2721–2731. doi: 10.1093/nar/18.9.2721. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Stamatoyannopoulos J. A., Goodwin A., Joyce T., Lowrey C. H. NF-E2 and GATA binding motifs are required for the formation of DNase I hypersensitive site 4 of the human beta-globin locus control region. EMBO J. 1995 Jan 3;14(1):106–116. doi: 10.1002/j.1460-2075.1995.tb06980.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Talbot D., Collis P., Antoniou M., Vidal M., Grosveld F., Greaves D. R. A dominant control region from the human beta-globin locus conferring integration site-independent gene expression. Nature. 1989 Mar 23;338(6213):352–355. doi: 10.1038/338352a0. [DOI] [PubMed] [Google Scholar]
  33. Talbot D., Philipsen S., Fraser P., Grosveld F. Detailed analysis of the site 3 region of the human beta-globin dominant control region. EMBO J. 1990 Jul;9(7):2169–2177. doi: 10.1002/j.1460-2075.1990.tb07386.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Tuan D. Y., Solomon W. B., London I. M., Lee D. P. An erythroid-specific, developmental-stage-independent enhancer far upstream of the human "beta-like globin" genes. Proc Natl Acad Sci U S A. 1989 Apr;86(8):2554–2558. doi: 10.1073/pnas.86.8.2554. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Tuan D., Abeliovich A., Lee-Oldham M., Lee D. Identification of regulatory elements of human beta-like globin genes. Prog Clin Biol Res. 1987;251:211–220. [PubMed] [Google Scholar]
  36. Tuan D., Solomon W., Li Q., London I. M. The "beta-like-globin" gene domain in human erythroid cells. Proc Natl Acad Sci U S A. 1985 Oct;82(19):6384–6388. doi: 10.1073/pnas.82.19.6384. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Wijgerde M., Grosveld F., Fraser P. Transcription complex stability and chromatin dynamics in vivo. Nature. 1995 Sep 21;377(6546):209–213. doi: 10.1038/377209a0. [DOI] [PubMed] [Google Scholar]
  38. Yu J., Bock J. H., Slightom J. L., Villeponteau B. A 5' beta-globin matrix-attachment region and the polyoma enhancer together confer position-independent transcription. Gene. 1994 Feb 25;139(2):139–145. doi: 10.1016/0378-1119(94)90747-1. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES