Skip to main content
Genetics logoLink to Genetics
. 2003 Feb;163(2):699–710. doi: 10.1093/genetics/163.2.699

A linkage map of an F2 hybrid population of Antirrhinum majus and A. molle.

Zsuzsanna Schwarz-Sommer 1, Eugenia de Andrade Silva 1, Rita Berndtgen 1, Wolf-Ekkehard Lönnig 1, Andreas Müller 1, Ingo Nindl 1, Kurt Stüber 1, Jörg Wunder 1, Heinz Saedler 1, Thomas Gübitz 1, Amanda Borking 1, John F Golz 1, Enrique Ritter 1, Andrew Hudson 1
PMCID: PMC1462440  PMID: 12618407

Abstract

To increase the utility of Antirrhinum for genetic and evolutionary studies, we constructed a molecular linkage map for an interspecific hybrid A. majus x A. molle. An F(2) population (n = 92) was genotyped at a minimum of 243 individual loci. Although distorted transmission ratios were observed at marker loci throughout the genome, a mapping strategy based on a fixed framework of codominant markers allowed the loci to be placed into eight robust linkage groups consistent with the haploid chromosome number of Antirrhinum. The mapped loci included 164 protein-coding genes and a similar number of unknown sequences mapped as AFLP, RFLP, ISTR, and ISSR markers. Inclusion of sequences from mutant loci allowed provisional alignment of classical and molecular linkage groups. The total map length was 613 cM with an average interval of 2.5 cM, but most of the loci were aggregated into clusters reducing the effective distance between markers. Potential causes of transmission ratio distortion and its effects on map construction were investigated. This first molecular linkage map for Antirrhinum should facilitate further mapping of mutations, major QTL, and other coding sequences in this model genus.

Full Text

The Full Text of this article is available as a PDF (260.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baudry E., Kerdelhué C., Innan H., Stephan W. Species and recombination effects on DNA variability in the tomato genus. Genetics. 2001 Aug;158(4):1725–1735. doi: 10.1093/genetics/158.4.1725. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bernacchi D., Tanksley S. D. An interspecific backcross of Lycopersicon esculentum x L. hirsutum: linkage analysis and a QTL study of sexual compatibility factors and floral traits. Genetics. 1997 Oct;147(2):861–877. doi: 10.1093/genetics/147.2.861. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bonas U., Sommer H., Saedler H. The 17-kb Tam1 element of Antirrhinum majus induces a 3-bp duplication upon integration into the chalcone synthase gene. EMBO J. 1984 May;3(5):1015–1019. doi: 10.1002/j.1460-2075.1984.tb01921.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chakravarti A., Lasher L. K., Reefer J. E. A maximum likelihood method for estimating genome length using genetic linkage data. Genetics. 1991 May;128(1):175–182. doi: 10.1093/genetics/128.1.175. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Coen E. S., Romero J. M., Doyle S., Elliott R., Murphy G., Carpenter R. floricaula: a homeotic gene required for flower development in antirrhinum majus. Cell. 1990 Dec 21;63(6):1311–1322. doi: 10.1016/0092-8674(90)90426-f. [DOI] [PubMed] [Google Scholar]
  6. Davies B., Motte P., Keck E., Saedler H., Sommer H., Schwarz-Sommer Z. PLENA and FARINELLI: redundancy and regulatory interactions between two Antirrhinum MADS-box factors controlling flower development. EMBO J. 1999 Jul 15;18(14):4023–4034. doi: 10.1093/emboj/18.14.4023. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Dooner H. K., Martínez-Férez I. M. Recombination occurs uniformly within the bronze gene, a meiotic recombination hotspot in the maize genome. Plant Cell. 1997 Sep;9(9):1633–1646. doi: 10.1105/tpc.9.9.1633. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Fischer A., Baum N., Saedler H., Theissen G. Chromosomal mapping of the MADS-box multigene family in Zea mays reveals dispersed distribution of allelic genes as well as transposed copies. Nucleic Acids Res. 1995 Jun 11;23(11):1901–1911. doi: 10.1093/nar/23.11.1901. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Fishman L., Kelly A. J., Morgan E., Willis J. H. A genetic map in the Mimulus guttatus species complex reveals transmission ratio distortion due to heterospecific interactions. Genetics. 2001 Dec;159(4):1701–1716. doi: 10.1093/genetics/159.4.1701. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Godwin I. D., Aitken E. A., Smith L. W. Application of inter simple sequence repeat (ISSR) markers to plant genetics. Electrophoresis. 1997 Aug;18(9):1524–1528. doi: 10.1002/elps.1150180906. [DOI] [PubMed] [Google Scholar]
  11. Goodrich J., Carpenter R., Coen E. S. A common gene regulates pigmentation pattern in diverse plant species. Cell. 1992 Mar 6;68(5):955–964. doi: 10.1016/0092-8674(92)90038-e. [DOI] [PubMed] [Google Scholar]
  12. Johnson NA. Speciation: Dobzhansky-Muller incompatibilities, dominance and gene interactions. Trends Ecol Evol. 2000 Dec 1;15(12):480–482. doi: 10.1016/s0169-5347(00)01961-3. [DOI] [PubMed] [Google Scholar]
  13. Luo D., Carpenter R., Vincent C., Copsey L., Coen E. Origin of floral asymmetry in Antirrhinum. Nature. 1996 Oct 31;383(6603):794–799. doi: 10.1038/383794a0. [DOI] [PubMed] [Google Scholar]
  14. Martin C., Carpenter R., Sommer H., Saedler H., Coen E. S. Molecular analysis of instability in flower pigmentation of Antirrhinum majus, following isolation of the pallida locus by transposon tagging. EMBO J. 1985 Jul;4(7):1625–1630. doi: 10.1002/j.1460-2075.1985.tb03829.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Noda K., Glover B. J., Linstead P., Martin C. Flower colour intensity depends on specialized cell shape controlled by a Myb-related transcription factor. Nature. 1994 Jun 23;369(6482):661–664. doi: 10.1038/369661a0. [DOI] [PubMed] [Google Scholar]
  16. Olmstead R. G., Depamphilis C. W., Wolfe A. D., Young N. D., Elisons W. J., Reeves P. A. Disintegration of the scrophulariaceae. Am J Bot. 2001 Feb;88(2):348–361. [PubMed] [Google Scholar]
  17. Remington D. L., O'Malley D. M. Whole-genome characterization of embryonic stage inbreeding depression in a selfed loblolly pine family. Genetics. 2000 May;155(1):337–348. doi: 10.1093/genetics/155.1.337. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Ritter E., Gebhardt C., Salamini F. Estimation of recombination frequencies and construction of RFLP linkage maps in plants from crosses between heterozygous parents. Genetics. 1990 Jul;125(3):645–654. doi: 10.1093/genetics/125.3.645. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Robbins T. P., Carpenter R., Coen E. S. A chromosome rearrangement suggests that donor and recipient sites are associated during Tam3 transposition in Antirrhinum majus. EMBO J. 1989 Jan;8(1):5–13. doi: 10.1002/j.1460-2075.1989.tb03342.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Schmidt T., Kudla J. The molecular structure, chromosomal organization, and interspecies distribution of a family of tandemly repeated DNA sequences of Antirrhinum majus L. Genome. 1996 Apr;39(2):243–248. doi: 10.1139/g96-033. [DOI] [PubMed] [Google Scholar]
  21. Soltis P. S., Soltis D. E., Chase M. W. Angiosperm phylogeny inferred from multiple genes as a tool for comparative biology. Nature. 1999 Nov 25;402(6760):402–404. doi: 10.1038/46528. [DOI] [PubMed] [Google Scholar]
  22. Sommer H., Beltrán J. P., Huijser P., Pape H., Lönnig W. E., Saedler H., Schwarz-Sommer Z. Deficiens, a homeotic gene involved in the control of flower morphogenesis in Antirrhinum majus: the protein shows homology to transcription factors. EMBO J. 1990 Mar;9(3):605–613. doi: 10.1002/j.1460-2075.1990.tb08152.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Tanksley S. D., Ganal M. W., Prince J. P., de Vicente M. C., Bonierbale M. W., Broun P., Fulton T. M., Giovannoni J. J., Grandillo S., Martin G. B. High density molecular linkage maps of the tomato and potato genomes. Genetics. 1992 Dec;132(4):1141–1160. doi: 10.1093/genetics/132.4.1141. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Vos P., Hogers R., Bleeker M., Reijans M., van de Lee T., Hornes M., Frijters A., Pot J., Peleman J., Kuiper M. AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res. 1995 Nov 11;23(21):4407–4414. doi: 10.1093/nar/23.21.4407. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Waites R., Selvadurai H. R., Oliver I. R., Hudson A. The PHANTASTICA gene encodes a MYB transcription factor involved in growth and dorsoventrality of lateral organs in Antirrhinum. Cell. 1998 May 29;93(5):779–789. doi: 10.1016/s0092-8674(00)81439-7. [DOI] [PubMed] [Google Scholar]
  26. Xue Y., Carpenter R., Dickinson H. G., Coen E. S. Origin of allelic diversity in antirrhinum S locus RNases. Plant Cell. 1996 May;8(5):805–814. doi: 10.1105/tpc.8.5.805. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES