Skip to main content
Genetics logoLink to Genetics
. 2003 Feb;163(2):711–722. doi: 10.1093/genetics/163.2.711

Quantitative trait loci analysis of water and anion contents in interaction with nitrogen availability in Arabidopsis thaliana.

Olivier Loudet 1, Sylvain Chaillou 1, Anne Krapp 1, Françoise Daniel-Vedele 1
PMCID: PMC1462446  PMID: 12618408

Abstract

In plants, water and anion parameters are linked, for example through the integration of nutritional signaling and the response to diverse stress. In this work, Arabidopsis thaliana is used as a model system to dissect the genetic variation of these parameters by quantitative trait loci (QTL) mapping in the 415 recombinant inbred lines of the Bay-0 x Shahdara population. Water, nitrate, chloride, and phosphate contents were measured at the vegetative stage in the shoots of plants grown in controlled conditions. Two contrasting nitrogen (N) conditions were studied, one leading to the complete depletion of the nitrate pool in the plants. Most of the observed genetic variation was identified as QTL, with medium but also large phenotypic contributions. QTL colocalization provides a genetic basis for the correlation between water and nitrate contents in nonlimiting N conditions and water and chloride contents in limiting N conditions. The 34 new QTL described here represent at least 19 loci polymorphic between Bay-0 and Shahdara; some may correspond to known genes from water/anion transport systems, while others clearly identify new genes controlling or interacting with water/anion absorption and accumulation. Interestingly, flowering-time genes probably play a role in the regulation of water content in our conditions.

Full Text

The Full Text of this article is available as a PDF (239.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bentsink L., Alonso-Blanco C., Vreugdenhil D., Tesnier K., Groot S. P., Koornneef M. Genetic analysis of seed-soluble oligosaccharides in relation to seed storability of Arabidopsis. Plant Physiol. 2000 Dec;124(4):1595–1604. doi: 10.1104/pp.124.4.1595. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Borevitz Justin O., Maloof Julin N., Lutes Jason, Dabi Tsegaye, Redfern Joanna L., Trainer Gabriel T., Werner Jonathan D., Asami Tadao, Berry Charles C., Weigel Detlef. Quantitative trait loci controlling light and hormone response in two accessions of Arabidopsis thaliana. Genetics. 2002 Feb;160(2):683–696. doi: 10.1093/genetics/160.2.683. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Breyne P., Rombaut D., Van Gysel A., Van Montagu M., Gerats T. AFLP analysis of genetic diversity within and between Arabidopsis thaliana ecotypes. Mol Gen Genet. 1999 Jun;261(4-5):627–634. doi: 10.1007/s004380050005. [DOI] [PubMed] [Google Scholar]
  4. Churchill G. A., Doerge R. W. Empirical threshold values for quantitative trait mapping. Genetics. 1994 Nov;138(3):963–971. doi: 10.1093/genetics/138.3.963. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Clarkson D. T., Carvajal M., Henzler T., Waterhouse R. N., Smyth A. J., Cooke D. T., Steudle E. Root hydraulic conductance: diurnal aquaporin expression and the effects of nutrient stress. J Exp Bot. 2000 Jan;51(342):61–70. [PubMed] [Google Scholar]
  6. Geelen D., Lurin C., Bouchez D., Frachisse J. M., Lelièvre F., Courtial B., Barbier-Brygoo H., Maurel C. Disruption of putative anion channel gene AtCLC-a in Arabidopsis suggests a role in the regulation of nitrate content. Plant J. 2000 Feb;21(3):259–267. doi: 10.1046/j.1365-313x.2000.00680.x. [DOI] [PubMed] [Google Scholar]
  7. Juenger T., Purugganan M., Mackay T. F. Quantitative trait loci for floral morphology in Arabidopsis thaliana. Genetics. 2000 Nov;156(3):1379–1392. doi: 10.1093/genetics/156.3.1379. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Kliebenstein D. J., Gershenzon J., Mitchell-Olds T. Comparative quantitative trait loci mapping of aliphatic, indolic and benzylic glucosinolate production in Arabidopsis thaliana leaves and seeds. Genetics. 2001 Sep;159(1):359–370. doi: 10.1093/genetics/159.1.359. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Lander E. S., Botstein D. Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics. 1989 Jan;121(1):185–199. doi: 10.1093/genetics/121.1.185. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Loudet O., Chaillou S., Camilleri C., Bouchez D., Daniel-Vedele F. Bay-0 x Shahdara recombinant inbred line population: a powerful tool for the genetic dissection of complex traits in Arabidopsis. Theor Appl Genet. 2002 Feb 13;104(6-7):1173–1184. doi: 10.1007/s00122-001-0825-9. [DOI] [PubMed] [Google Scholar]
  11. Loudet Olivier, Chaillou Sylvain, Merigout Patricia, Talbotec Joël, Daniel-Vedele Françoise. Quantitative trait loci analysis of nitrogen use efficiency in Arabidopsis. Plant Physiol. 2003 Jan;131(1):345–358. doi: 10.1104/pp.102.010785. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Lukowitz W., Gillmor C. S., Scheible W. R. Positional cloning in Arabidopsis. Why it feels good to have a genome initiative working for you. Plant Physiol. 2000 Jul;123(3):795–805. doi: 10.1104/pp.123.3.795. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Michaels S. D., Amasino R. M. FLOWERING LOCUS C encodes a novel MADS domain protein that acts as a repressor of flowering. Plant Cell. 1999 May;11(5):949–956. doi: 10.1105/tpc.11.5.949. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Mitchell-Olds T., Pedersen D. The molecular basis of quantitative genetic variation in central and secondary metabolism in Arabidopsis. Genetics. 1998 Jun;149(2):739–747. doi: 10.1093/genetics/149.2.739. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Narang R. A., Bruene A., Altmann T. Analysis of phosphate acquisition efficiency in different Arabidopsis accessions. Plant Physiol. 2000 Dec;124(4):1786–1799. doi: 10.1104/pp.124.4.1786. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Remington D. L., Ungerer M. C., Purugganan M. D. Map-based cloning of quantitative trait loci: progress and prospects. Genet Res. 2001 Dec;78(3):213–218. doi: 10.1017/s0016672301005456. [DOI] [PubMed] [Google Scholar]
  17. Sharbel T. F., Haubold B., Mitchell-Olds T. Genetic isolation by distance in Arabidopsis thaliana: biogeography and postglacial colonization of Europe. Mol Ecol. 2000 Dec;9(12):2109–2118. doi: 10.1046/j.1365-294x.2000.01122.x. [DOI] [PubMed] [Google Scholar]
  18. Sheldon C. C., Rouse D. T., Finnegan E. J., Peacock W. J., Dennis E. S. The molecular basis of vernalization: the central role of FLOWERING LOCUS C (FLC). Proc Natl Acad Sci U S A. 2000 Mar 28;97(7):3753–3758. doi: 10.1073/pnas.060023597. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Somers D. E., Webb A. A., Pearson M., Kay S. A. The short-period mutant, toc1-1, alters circadian clock regulation of multiple outputs throughout development in Arabidopsis thaliana. Development. 1998 Feb;125(3):485–494. doi: 10.1242/dev.125.3.485. [DOI] [PubMed] [Google Scholar]
  20. Stitt M. Nitrate regulation of metabolism and growth. Curr Opin Plant Biol. 1999 Jun;2(3):178–186. doi: 10.1016/S1369-5266(99)80033-8. [DOI] [PubMed] [Google Scholar]
  21. Swarup K., Alonso-Blanco C., Lynn J. R., Michaels S. D., Amasino R. M., Koornneef M., Millar A. J. Natural allelic variation identifies new genes in the Arabidopsis circadian system. Plant J. 1999 Oct;20(1):67–77. doi: 10.1046/j.1365-313x.1999.00577.x. [DOI] [PubMed] [Google Scholar]
  22. Ungerer Mark C., Halldorsdottir Solveig S., Modliszewski Jennifer L., Mackay Trudy F. C., Purugganan Michael D. Quantitative trait loci for inflorescence development in Arabidopsis thaliana. Genetics. 2002 Mar;160(3):1133–1151. doi: 10.1093/genetics/160.3.1133. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Visscher P. M., Thompson R., Haley C. S. Confidence intervals in QTL mapping by bootstrapping. Genetics. 1996 Jun;143(2):1013–1020. doi: 10.1093/genetics/143.2.1013. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Wang Y. H., Garvin D. F., Kochian L. V. Nitrate-induced genes in tomato roots. Array analysis reveals novel genes that may play a role in nitrogen nutrition. Plant Physiol. 2001 Sep;127(1):345–359. doi: 10.1104/pp.127.1.345. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Yano M. Genetic and molecular dissection of naturally occurring variation. Curr Opin Plant Biol. 2001 Apr;4(2):130–135. doi: 10.1016/s1369-5266(00)00148-5. [DOI] [PubMed] [Google Scholar]
  26. Zhang H., Jennings A., Barlow P. W., Forde B. G. Dual pathways for regulation of root branching by nitrate. Proc Natl Acad Sci U S A. 1999 May 25;96(11):6529–6534. doi: 10.1073/pnas.96.11.6529. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES