Abstract
The probability that an advantageous mutant rises to fixation in a viral quasispecies is investigated in the framework of multitype branching processes. Whether fixation is possible depends on the overall growth rate of the quasispecies that will form if invasion is successful rather than on the individual fitness of the invading mutant. The exact fixation probability can be calculated only if the fitnesses of all potential members of the invading quasispecies are known. Quasispecies fixation has two important characteristics: First, a sequence with negative selection coefficient has a positive fixation probability as long as it has the potential to grow into a quasispecies with an overall growth rate that exceeds that of the established quasispecies. Second, the fixation probabilities of sequences with identical fitnesses can nevertheless vary over many orders of magnitudes. Two approximations for the probability of fixation are introduced. Both approximations require only partial knowledge about the potential members of the invading quasispecies. The performance of these two approximations is compared to the exact fixation probability on a network of RNA sequences with identical secondary structure.
Full Text
The Full Text of this article is available as a PDF (106.7 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Arjan J. A., Visser M., Zeyl C. W., Gerrish P. J., Blanchard J. L., Lenski R. E. Diminishing returns from mutation supply rate in asexual populations. Science. 1999 Jan 15;283(5400):404–406. doi: 10.1126/science.283.5400.404. [DOI] [PubMed] [Google Scholar]
- Barton N. H. Linkage and the limits to natural selection. Genetics. 1995 Jun;140(2):821–841. doi: 10.1093/genetics/140.2.821. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Biebricher C. K., Luce R. Sequence analysis of RNA species synthesized by Q beta replicase without template. Biochemistry. 1993 May 11;32(18):4848–4854. doi: 10.1021/bi00069a021. [DOI] [PubMed] [Google Scholar]
- Bornberg-Bauer E. How are model protein structures distributed in sequence space? Biophys J. 1997 Nov;73(5):2393–2403. doi: 10.1016/S0006-3495(97)78268-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Burch C. L., Chao L. Evolvability of an RNA virus is determined by its mutational neighbourhood. Nature. 2000 Aug 10;406(6796):625–628. doi: 10.1038/35020564. [DOI] [PubMed] [Google Scholar]
- Chumakov K. M., Powers L. B., Noonan K. E., Roninson I. B., Levenbook I. S. Correlation between amount of virus with altered nucleotide sequence and the monkey test for acceptability of oral poliovirus vaccine. Proc Natl Acad Sci U S A. 1991 Jan 1;88(1):199–203. doi: 10.1073/pnas.88.1.199. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Demetrius L., Schuster P., Sigmund K. Polynucleotide evolution and branching processes. Bull Math Biol. 1985;47(2):239–262. doi: 10.1007/BF02460034. [DOI] [PubMed] [Google Scholar]
- Domingo E., Sabo D., Taniguchi T., Weissmann C. Nucleotide sequence heterogeneity of an RNA phage population. Cell. 1978 Apr;13(4):735–744. doi: 10.1016/0092-8674(78)90223-4. [DOI] [PubMed] [Google Scholar]
- Domingo Esteban. Quasispecies Theory in Virology. J Virol. 2002 Jan 1;76(1):463–465. doi: 10.1128/JVI.76.1.463-465.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Drake J. W., Holland J. J. Mutation rates among RNA viruses. Proc Natl Acad Sci U S A. 1999 Nov 23;96(24):13910–13913. doi: 10.1073/pnas.96.24.13910. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Drake J. W. Rates of spontaneous mutation among RNA viruses. Proc Natl Acad Sci U S A. 1993 May 1;90(9):4171–4175. doi: 10.1073/pnas.90.9.4171. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gerrish P. J., Lenski R. E. The fate of competing beneficial mutations in an asexual population. Genetica. 1998;102-103(1-6):127–144. [PubMed] [Google Scholar]
- Hermisson Joachim, Redner Oliver, Wagner Holger, Baake Ellen. Mutation-selection balance: ancestry, load, and maximum principle. Theor Popul Biol. 2002 Aug;62(1):9–46. doi: 10.1006/tpbi.2002.1582. [DOI] [PubMed] [Google Scholar]
- Holland J., Spindler K., Horodyski F., Grabau E., Nichol S., VandePol S. Rapid evolution of RNA genomes. Science. 1982 Mar 26;215(4540):1577–1585. doi: 10.1126/science.7041255. [DOI] [PubMed] [Google Scholar]
- Holmes Edward C., Moya Andrés. Is the quasispecies concept relevant to RNA viruses? J Virol. 2002 Jan;76(1):460–465. doi: 10.1128/JVI.76.1.460-462.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Huynen M. A., Stadler P. F., Fontana W. Smoothness within ruggedness: the role of neutrality in adaptation. Proc Natl Acad Sci U S A. 1996 Jan 9;93(1):397–401. doi: 10.1073/pnas.93.1.397. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jenkins G. M., Worobey M., Woelk C. H., Holmes E. C. Evidence for the non-quasispecies evolution of RNA viruses [corrected]. Mol Biol Evol. 2001 Jun;18(6):987–994. doi: 10.1093/oxfordjournals.molbev.a003900. [DOI] [PubMed] [Google Scholar]
- Johnson Toby, Barton Nick H. The effect of deleterious alleles on adaptation in asexual populations. Genetics. 2002 Sep;162(1):395–411. doi: 10.1093/genetics/162.1.395. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kimura M., King J. L. Fixation of a deleterious allele at one of two "duplicate" loci by mutation pressure and random drift. Proc Natl Acad Sci U S A. 1979 Jun;76(6):2858–2861. doi: 10.1073/pnas.76.6.2858. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kimura M. The length of time required for a selectively neutral mutant to reach fixation through random frequency drift in a finite population. Genet Res. 1970 Feb;15(1):131–133. doi: 10.1017/s0016672300001439. [DOI] [PubMed] [Google Scholar]
- Krakauer David C., Plotkin Joshua B. Redundancy, antiredundancy, and the robustness of genomes. Proc Natl Acad Sci U S A. 2002 Jan 29;99(3):1405–1409. doi: 10.1073/pnas.032668599. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Miralles R., Gerrish P. J., Moya A., Elena S. F. Clonal interference and the evolution of RNA viruses. Science. 1999 Sep 10;285(5434):1745–1747. doi: 10.1126/science.285.5434.1745. [DOI] [PubMed] [Google Scholar]
- Miralles R., Moya A., Elena S. F. Diminishing returns of population size in the rate of RNA virus adaptation. J Virol. 2000 Apr;74(8):3566–3571. doi: 10.1128/jvi.74.8.3566-3571.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Otto S. P., Barton N. H. The evolution of recombination: removing the limits to natural selection. Genetics. 1997 Oct;147(2):879–906. doi: 10.1093/genetics/147.2.879. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pollak E. Fixation probabilities when the population size undergoes cyclic fluctuations. Theor Popul Biol. 2000 Feb;57(1):51–58. doi: 10.1006/tpbi.1999.1436. [DOI] [PubMed] [Google Scholar]
- Schuster P., Swetina J. Stationary mutant distributions and evolutionary optimization. Bull Math Biol. 1988;50(6):635–660. doi: 10.1007/BF02460094. [DOI] [PubMed] [Google Scholar]
- Steinhauer D. A., de la Torre J. C., Meier E., Holland J. J. Extreme heterogeneity in populations of vesicular stomatitis virus. J Virol. 1989 May;63(5):2072–2080. doi: 10.1128/jvi.63.5.2072-2080.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Teng M. N., Oldstone M. B., de la Torre J. C. Suppression of lymphocytic choriomeningitis virus--induced growth hormone deficiency syndrome by disease-negative virus variants. Virology. 1996 Sep 1;223(1):113–119. doi: 10.1006/viro.1996.0460. [DOI] [PubMed] [Google Scholar]
- Wilke C. O., Wang J. L., Ofria C., Lenski R. E., Adami C. Evolution of digital organisms at high mutation rates leads to survival of the flattest. Nature. 2001 Jul 19;412(6844):331–333. doi: 10.1038/35085569. [DOI] [PubMed] [Google Scholar]
- de la Torre J. C., Holland J. J. RNA virus quasispecies populations can suppress vastly superior mutant progeny. J Virol. 1990 Dec;64(12):6278–6281. doi: 10.1128/jvi.64.12.6278-6281.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- van Nimwegen E., Crutchfield J. P., Huynen M. Neutral evolution of mutational robustness. Proc Natl Acad Sci U S A. 1999 Aug 17;96(17):9716–9720. doi: 10.1073/pnas.96.17.9716. [DOI] [PMC free article] [PubMed] [Google Scholar]