Abstract
Genes that have undergone positive or diversifying selection are likely to be associated with adaptive divergence between species. One indicator of adaptive selection at the molecular level is an excess of amino acid replacement fixed differences per replacement site relative to the number of synonymous fixed differences per synonymous site (omega = K(a)/K(s)). We used an evolutionary expressed sequence tag (EST) approach to estimate the distribution of omega among 304 orthologous loci between Arabidopsis thaliana and A. lyrata to identify genes potentially involved in the adaptive divergence between these two Brassicaceae species. We find that 14 of 304 genes (approximately 5%) have an estimated omega > 1 and are candidates for genes with increased selection intensities. Molecular population genetic analyses of 6 of these rapidly evolving protein loci indicate that, despite their high levels of between-species nonsynonymous divergence, these genes do not have elevated levels of intraspecific replacement polymorphisms compared to previously studied genes. A hierarchical Bayesian analysis of protein-coding region evolution within and between species also indicates that the selection intensities of these genes are elevated compared to previously studied A. thaliana nuclear loci.
Full Text
The Full Text of this article is available as a PDF (195.7 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Arabidopsis Genome Initiative Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature. 2000 Dec 14;408(6814):796–815. doi: 10.1038/35048692. [DOI] [PubMed] [Google Scholar]
- Boldin M. P., Mett I. L., Wallach D. A protein related to a proteasomal subunit binds to the intracellular domain of the p55 TNF receptor upstream to its 'death domain'. FEBS Lett. 1995 Jun 19;367(1):39–44. doi: 10.1016/0014-5793(95)00534-g. [DOI] [PubMed] [Google Scholar]
- Bustamante Carlos D., Nielsen Rasmus, Hartl Daniel L. A maximum likelihood method for analyzing pseudogene evolution: implications for silent site evolution in humans and rodents. Mol Biol Evol. 2002 Jan;19(1):110–117. doi: 10.1093/oxfordjournals.molbev.a003975. [DOI] [PubMed] [Google Scholar]
- Bustamante Carlos D., Nielsen Rasmus, Sawyer Stanley A., Olsen Kenneth M., Purugganan Michael D., Hartl Daniel L. The cost of inbreeding in Arabidopsis. Nature. 2002 Apr 4;416(6880):531–534. doi: 10.1038/416531a. [DOI] [PubMed] [Google Scholar]
- Doebley J., Lukens L. Transcriptional regulators and the evolution of plant form. Plant Cell. 1998 Jul;10(7):1075–1082. doi: 10.1105/tpc.10.7.1075. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Endo T., Ikeo K., Gojobori T. Large-scale search for genes on which positive selection may operate. Mol Biol Evol. 1996 May;13(5):685–690. doi: 10.1093/oxfordjournals.molbev.a025629. [DOI] [PubMed] [Google Scholar]
- Ewing B., Hillier L., Wendl M. C., Green P. Base-calling of automated sequencer traces using phred. I. Accuracy assessment. Genome Res. 1998 Mar;8(3):175–185. doi: 10.1101/gr.8.3.175. [DOI] [PubMed] [Google Scholar]
- Hughes A. L. Circumsporozoite protein genes of malaria parasites (Plasmodium spp.): evidence for positive selection on immunogenic regions. Genetics. 1991 Feb;127(2):345–353. doi: 10.1093/genetics/127.2.345. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hughes A. L., Yeager M. Natural selection at major histocompatibility complex loci of vertebrates. Annu Rev Genet. 1998;32:415–435. doi: 10.1146/annurev.genet.32.1.415. [DOI] [PubMed] [Google Scholar]
- Koch M. A., Haubold B., Mitchell-Olds T. Comparative evolutionary analysis of chalcone synthase and alcohol dehydrogenase loci in Arabidopsis, Arabis, and related genera (Brassicaceae). Mol Biol Evol. 2000 Oct;17(10):1483–1498. doi: 10.1093/oxfordjournals.molbev.a026248. [DOI] [PubMed] [Google Scholar]
- Lawton-Rauh A. L., Buckler E. S., 4th, Purugganan M. D. Patterns of molecular evolution among paralogous floral homeotic genes. Mol Biol Evol. 1999 Aug;16(8):1037–1045. doi: 10.1093/oxfordjournals.molbev.a026193. [DOI] [PubMed] [Google Scholar]
- Li W. H., Gojobori T., Nei M. Pseudogenes as a paradigm of neutral evolution. Nature. 1981 Jul 16;292(5820):237–239. doi: 10.1038/292237a0. [DOI] [PubMed] [Google Scholar]
- McDonald J. H., Kreitman M. Adaptive protein evolution at the Adh locus in Drosophila. Nature. 1991 Jun 20;351(6328):652–654. doi: 10.1038/351652a0. [DOI] [PubMed] [Google Scholar]
- Messier W., Stewart C. B. Episodic adaptive evolution of primate lysozymes. Nature. 1997 Jan 9;385(6612):151–154. doi: 10.1038/385151a0. [DOI] [PubMed] [Google Scholar]
- Miyashita N. T., Kawabe A., Innan H., Terauchi R. Intra- and interspecific DNA variation and codon bias of the alcohol dehydrogenase (Adh) locus in Arabis and Arabidopsis species. Mol Biol Evol. 1998 Nov;15(11):1420–1429. doi: 10.1093/oxfordjournals.molbev.a025870. [DOI] [PubMed] [Google Scholar]
- Nei M., Gojobori T. Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. Mol Biol Evol. 1986 Sep;3(5):418–426. doi: 10.1093/oxfordjournals.molbev.a040410. [DOI] [PubMed] [Google Scholar]
- Nielsen R. Statistical tests of selective neutrality in the age of genomics. Heredity (Edinb) 2001 Jun;86(Pt 6):641–647. doi: 10.1046/j.1365-2540.2001.00895.x. [DOI] [PubMed] [Google Scholar]
- Olsen Kenneth M., Womack Andrew, Garrett Ashley R., Suddith Jane I., Purugganan Michael D. Contrasting evolutionary forces in the Arabidopsis thaliana floral developmental pathway. Genetics. 2002 Apr;160(4):1641–1650. doi: 10.1093/genetics/160.4.1641. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Purugganan M. D., Suddith J. I. Molecular population genetics of floral homeotic loci. Departures from the equilibrium-neutral model at the APETALA3 and PISTILLATA genes of Arabidopsis thaliana. Genetics. 1999 Feb;151(2):839–848. doi: 10.1093/genetics/151.2.839. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rozas J., Rozas R. DnaSP version 3: an integrated program for molecular population genetics and molecular evolution analysis. Bioinformatics. 1999 Feb;15(2):174–175. doi: 10.1093/bioinformatics/15.2.174. [DOI] [PubMed] [Google Scholar]
- Sawyer S. A., Hartl D. L. Population genetics of polymorphism and divergence. Genetics. 1992 Dec;132(4):1161–1176. doi: 10.1093/genetics/132.4.1161. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schmid K. J., Aquadro C. F. The evolutionary analysis of "orphans" from the Drosophila genome identifies rapidly diverging and incorrectly annotated genes. Genetics. 2001 Oct;159(2):589–598. doi: 10.1093/genetics/159.2.589. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sucena E., Stern D. L. Divergence of larval morphology between Drosophila sechellia and its sibling species caused by cis-regulatory evolution of ovo/shaven-baby. Proc Natl Acad Sci U S A. 2000 Apr 25;97(9):4530–4534. doi: 10.1073/pnas.97.9.4530. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Swanson W. J., Clark A. G., Waldrip-Dail H. M., Wolfner M. F., Aquadro C. F. Evolutionary EST analysis identifies rapidly evolving male reproductive proteins in Drosophila. Proc Natl Acad Sci U S A. 2001 Jun 12;98(13):7375–7379. doi: 10.1073/pnas.131568198. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Swanson W. J., Vacquier V. D. Extraordinary divergence and positive Darwinian selection in a fusagenic protein coating the acrosomal process of abalone spermatozoa. Proc Natl Acad Sci U S A. 1995 May 23;92(11):4957–4961. doi: 10.1073/pnas.92.11.4957. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tiffin Peter, Hahn Matthew W. Coding sequence divergence between two closely related plant species: Arabidopsis thaliana and Brassica rapa ssp. pekinensis. J Mol Evol. 2002 Jun;54(6):746–753. doi: 10.1007/s00239-001-0074-1. [DOI] [PubMed] [Google Scholar]
- Watterson G. A. On the number of segregating sites in genetical models without recombination. Theor Popul Biol. 1975 Apr;7(2):256–276. doi: 10.1016/0040-5809(75)90020-9. [DOI] [PubMed] [Google Scholar]
- Xie Q., Frugis G., Colgan D., Chua N. H. Arabidopsis NAC1 transduces auxin signal downstream of TIR1 to promote lateral root development. Genes Dev. 2000 Dec 1;14(23):3024–3036. doi: 10.1101/gad.852200. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhang J., Rosenberg H. F., Nei M. Positive Darwinian selection after gene duplication in primate ribonuclease genes. Proc Natl Acad Sci U S A. 1998 Mar 31;95(7):3708–3713. doi: 10.1073/pnas.95.7.3708. [DOI] [PMC free article] [PubMed] [Google Scholar]