Skip to main content
Genetics logoLink to Genetics
. 2003 Feb;163(2):581–589. doi: 10.1093/genetics/163.2.581

Deficiencies in C20 polyunsaturated fatty acids cause behavioral and developmental defects in Caenorhabditis elegans fat-3 mutants.

Jennifer L Watts 1, Eric Phillips 1, Katharine R Griffing 1, John Browse 1
PMCID: PMC1462460  PMID: 12618397

Abstract

Arachidonic acid and other long-chain polyunsaturated fatty acids (PUFAs) are important structural components of membranes and are implicated in diverse signaling pathways. The Delta6 desaturation of linoleic and linolenic acids is the rate-limiting step in the synthesis of these molecules. C. elegans fat-3 mutants lack Delta6 desaturase activity and fail to produce C20 PUFAs. We examined these mutants and found that development and behavior were affected as a consequence of C20 PUFA deficiency. While fat-3 mutants are viable, they grow slowly, display considerably less spontaneous movement, have an altered body shape, and produce fewer progeny than do wild type. In addition, the timing of an ultradian rhythm, the defecation cycle, is lengthened compared to wild type. Since all these defects can be ameliorated by supplementing the nematode diet with gamma-linolenic acid or C20 PUFAs of either the n6 or the n3 series, we can establish a causal link between fatty acid deficiency and phenotype. Similar epidermal tissue defects and slow growth are hallmarks of human fatty acid deficiency.

Full Text

The Full Text of this article is available as a PDF (260.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Blaxter M. L. Cuticle surface proteins of wild type and mutant Caenorhabditis elegans. J Biol Chem. 1993 Mar 25;268(9):6600–6609. [PubMed] [Google Scholar]
  2. Branicky R., Shibata Y., Feng J., Hekimi S. Phenotypic and suppressor analysis of defecation in clk-1 mutants reveals that reaction to changes in temperature is an active process in Caenorhabditis elegans. Genetics. 2001 Nov;159(3):997–1006. doi: 10.1093/genetics/159.3.997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Brash A. R. Arachidonic acid as a bioactive molecule. J Clin Invest. 2001 Jun;107(11):1339–1345. doi: 10.1172/JCI13210. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Carricaburu V., Fournier B. Phosphoinositide fatty acids regulate phosphatidylinositol 5-kinase, phospholipase C and protein kinase C activities. Eur J Biochem. 2001 Mar;268(5):1238–1249. doi: 10.1046/j.1432-1327.2001.01984.x. [DOI] [PubMed] [Google Scholar]
  5. Chyb S., Raghu P., Hardie R. C. Polyunsaturated fatty acids activate the Drosophila light-sensitive channels TRP and TRPL. Nature. 1999 Jan 21;397(6716):255–259. doi: 10.1038/16703. [DOI] [PubMed] [Google Scholar]
  6. Dal Santo P., Logan M. A., Chisholm A. D., Jorgensen E. M. The inositol trisphosphate receptor regulates a 50-second behavioral rhythm in C. elegans. Cell. 1999 Sep 17;98(6):757–767. doi: 10.1016/s0092-8674(00)81510-x. [DOI] [PubMed] [Google Scholar]
  7. Davis M. W., Fleischhauer R., Dent J. A., Joho R. H., Avery L. A mutation in the C. elegans EXP-2 potassium channel that alters feeding behavior. Science. 1999 Dec 24;286(5449):2501–2504. doi: 10.1126/science.286.5449.2501. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Funk C. D. Prostaglandins and leukotrienes: advances in eicosanoid biology. Science. 2001 Nov 30;294(5548):1871–1875. doi: 10.1126/science.294.5548.1871. [DOI] [PubMed] [Google Scholar]
  9. Hobert O., Moerman D. G., Clark K. A., Beckerle M. C., Ruvkun G. A conserved LIM protein that affects muscular adherens junction integrity and mechanosensory function in Caenorhabditis elegans. J Cell Biol. 1999 Jan 11;144(1):45–57. doi: 10.1083/jcb.144.1.45. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Madani S., Hichami A., Legrand A., Belleville J., Khan N. A. Implication of acyl chain of diacylglycerols in activation of different isoforms of protein kinase C. FASEB J. 2001 Dec;15(14):2595–2601. doi: 10.1096/fj.01-0753int. [DOI] [PubMed] [Google Scholar]
  11. Mello C. C., Kramer J. M., Stinchcomb D., Ambros V. Efficient gene transfer in C.elegans: extrachromosomal maintenance and integration of transforming sequences. EMBO J. 1991 Dec;10(12):3959–3970. doi: 10.1002/j.1460-2075.1991.tb04966.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Menzel R., Bogaert T., Achazi R. A systematic gene expression screen of Caenorhabditis elegans cytochrome P450 genes reveals CYP35 as strongly xenobiotic inducible. Arch Biochem Biophys. 2001 Nov 15;395(2):158–168. doi: 10.1006/abbi.2001.2568. [DOI] [PubMed] [Google Scholar]
  13. Meves H. Modulation of ion channels by arachidonic acid. Prog Neurobiol. 1994 Jun;43(2):175–186. doi: 10.1016/0301-0082(94)90012-4. [DOI] [PubMed] [Google Scholar]
  14. Miller K. G., Alfonso A., Nguyen M., Crowell J. A., Johnson C. D., Rand J. B. A genetic selection for Caenorhabditis elegans synaptic transmission mutants. Proc Natl Acad Sci U S A. 1996 Oct 29;93(22):12593–12598. doi: 10.1073/pnas.93.22.12593. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Miquel M. F., Browse J. A. High-Oleate Oilseeds Fail to Develop at Low Temperature. Plant Physiol. 1994 Oct;106(2):421–427. doi: 10.1104/pp.106.2.421. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Miyadera H., Amino H., Hiraishi A., Taka H., Murayama K., Miyoshi H., Sakamoto K., Ishii N., Hekimi S., Kita K. Altered quinone biosynthesis in the long-lived clk-1 mutants of Caenorhabditis elegans. J Biol Chem. 2001 Jan 17;276(11):7713–7716. doi: 10.1074/jbc.C000889200. [DOI] [PubMed] [Google Scholar]
  17. Napier J. A., Michaelson L. V. Genomic and functional characterization of polyunsaturated fatty acid biosynthesis in Caenorhabditis elegans. Lipids. 2001 Aug;36(8):761–766. doi: 10.1007/s11745-001-0782-9. [DOI] [PubMed] [Google Scholar]
  18. Plenefisch J. D., DeLong L., Meyer B. J. Genes that implement the hermaphrodite mode of dosage compensation in Caenorhabditis elegans. Genetics. 1989 Jan;121(1):57–76. doi: 10.1093/genetics/121.1.57. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Reiner D. J., Newton E. M., Tian H., Thomas J. H. Diverse behavioural defects caused by mutations in Caenorhabditis elegans unc-43 CaM kinase II. Nature. 1999 Nov 11;402(6758):199–203. doi: 10.1038/46072. [DOI] [PubMed] [Google Scholar]
  20. Reiner D. J., Weinshenker D., Thomas J. H. Analysis of dominant mutations affecting muscle excitation in Caenorhabditis elegans. Genetics. 1995 Nov;141(3):961–976. doi: 10.1093/genetics/141.3.961. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Schmidt A., Wolde M., Thiele C., Fest W., Kratzin H., Podtelejnikov A. V., Witke W., Huttner W. B., Söling H. D. Endophilin I mediates synaptic vesicle formation by transfer of arachidonate to lysophosphatidic acid. Nature. 1999 Sep 9;401(6749):133–141. doi: 10.1038/43613. [DOI] [PubMed] [Google Scholar]
  22. Smith V. P., Selkirk M. E., Gounaris K. Identification and composition of lipid classes in surface and somatic preparations of adult Brugia malayi. Mol Biochem Parasitol. 1996 Jun;78(1-2):105–116. doi: 10.1016/s0166-6851(96)02615-1. [DOI] [PubMed] [Google Scholar]
  23. Take-Uchi M., Kawakami M., Ishihara T., Amano T., Kondo K., Katsura I. An ion channel of the degenerin/epithelial sodium channel superfamily controls the defecation rhythm in Caenorhabditis elegans. Proc Natl Acad Sci U S A. 1998 Sep 29;95(20):11775–11780. doi: 10.1073/pnas.95.20.11775. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Thomas J. H. Genetic analysis of defecation in Caenorhabditis elegans. Genetics. 1990 Apr;124(4):855–872. doi: 10.1093/genetics/124.4.855. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Wada H., Gombos Z., Murata N. Contribution of membrane lipids to the ability of the photosynthetic machinery to tolerate temperature stress. Proc Natl Acad Sci U S A. 1994 May 10;91(10):4273–4277. doi: 10.1073/pnas.91.10.4273. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Williard D. E., Nwankwo J. O., Kaduce T. L., Harmon S. D., Irons M., Moser H. W., Raymond G. V., Spector A. A. Identification of a fatty acid delta6-desaturase deficiency in human skin fibroblasts. J Lipid Res. 2001 Apr;42(4):501–508. [PubMed] [Google Scholar]
  27. Williard D. E., Nwankwo J. O., Kaduce T. L., Harmon S. D., Irons M., Moser H. W., Raymond G. V., Spector A. A. Identification of a fatty acid delta6-desaturase deficiency in human skin fibroblasts. J Lipid Res. 2001 Apr;42(4):501–508. [PubMed] [Google Scholar]
  28. Xiao Y. F., Ke Q., Wang S. Y., Auktor K., Yang Y., Wang G. K., Morgan J. P., Leaf A. Single point mutations affect fatty acid block of human myocardial sodium channel alpha subunit Na+ channels. Proc Natl Acad Sci U S A. 2001 Mar 6;98(6):3606–3611. doi: 10.1073/pnas.061003798. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES