Skip to main content
Genetics logoLink to Genetics
. 2003 Feb;163(2):599–609. doi: 10.1093/genetics/163.2.599

Evidence of a high rate of selective sweeps in African Drosophila melanogaster.

Sylvain Mousset 1, Lionel Brazier 1, Marie-Louise Cariou 1, Frédérique Chartois 1, Frantz Depaulis 1, Michel Veuille 1
PMCID: PMC1462469  PMID: 12618399

Abstract

Assessing the rate of evolution depends on our ability to detect selection at several genes simultaneously. We summarize DNA sequence variation data in three new and six previously published data sets from the left arm of the second chromosome of Drosophila melanogaster in a population from West Africa, the presumed area of origin of this species. Four loci [Acp26Aa, Fbp2, Vha68-1, and Su(H)] were previously found to deviate from a neutral mutation-drift equilibrium as a consequence of one or several selective sweeps. Polymorphism data from five loci from intervening regions (dpp, Acp26Ab, Acp29AB, GH10711, and Sos) did not show the characteristic deviation from neutrality caused by local selective sweeps. This genomic region is polymorphic for the In(2L)t inversion. Four loci located near inversion breakpoints [dpp, sos, GH10711, and Su(H)] showed significant structuring between the two arrangements or significant deviation from neutrality in the inverted class, probably as a result of a recent shift in inversion frequency. Overall, these patterns of variation suggest that the four selective events were independent. Six loci were observed with no a priori knowledge of selection, and independent selective sweeps were detected in three of them. This suggests that a large part of the D. melanogaster genome has experienced the effect of positive selection in its ancestral African range.

Full Text

The Full Text of this article is available as a PDF (173.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aguadé M., Miyashita N., Langley C. H. Polymorphism and divergence in the Mst26A male accessory gland gene region in Drosophila. Genetics. 1992 Nov;132(3):755–770. doi: 10.1093/genetics/132.3.755. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Andolfatto P., Wall J. D., Kreitman M. Unusual haplotype structure at the proximal breakpoint of In(2L)t in a natural population of Drosophila melanogaster. Genetics. 1999 Nov;153(3):1297–1311. doi: 10.1093/genetics/153.3.1297. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Aquadro C. F., Weaver A. L., Schaeffer S. W., Anderson W. W. Molecular evolution of inversions in Drosophila pseudoobscura: the amylase gene region. Proc Natl Acad Sci U S A. 1991 Jan 1;88(1):305–309. doi: 10.1073/pnas.88.1.305. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Balakirev E. S., Balakirev E. I., Rodríguez-Trelles F., Ayala F. J. Molecular evolution of two linked genes, Est-6 and Sod, in Drosophila melanogaster. Genetics. 1999 Nov;153(3):1357–1369. doi: 10.1093/genetics/153.3.1357. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Begun D. J., Whitley P. Genetics of alpha-amanitin resistance in a natural population of Drosophila melanogaster. Heredity (Edinb) 2000 Aug;85(Pt 2):184–190. doi: 10.1046/j.1365-2540.2000.00729.x. [DOI] [PubMed] [Google Scholar]
  6. Betrán E., Rozas J., Navarro A., Barbadilla A. The estimation of the number and the length distribution of gene conversion tracts from population DNA sequence data. Genetics. 1997 May;146(1):89–99. doi: 10.1093/genetics/146.1.89. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Bénassi V., Aulard S., Mazeau S., Veuille M. Molecular variation of Adh and P6 genes in an African population of Drosophila melanogaster and its relation to chromosomal inversions. Genetics. 1993 Jul;134(3):789–799. doi: 10.1093/genetics/134.3.789. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Bénassi V., Depaulis F., Meghlaoui G. K., Veuille M. Partial sweeping of variation at the Fbp2 locus in a west African population of Drosophila melanogaster. Mol Biol Evol. 1999 Mar;16(3):347–353. doi: 10.1093/oxfordjournals.molbev.a026115. [DOI] [PubMed] [Google Scholar]
  9. Bénassi V., Veuille M. Comparative population structuring of molecular and allozyme variation of Drosophila melanogaster Adh between Europe, west Africa and east Africa. Genet Res. 1995 Apr;65(2):95–103. doi: 10.1017/s0016672300033115. [DOI] [PubMed] [Google Scholar]
  10. Cirera S., Aguadé M. Evolutionary history of the sex-peptide (Acp70A) gene region in Drosophila melanogaster. Genetics. 1997 Sep;147(1):189–197. doi: 10.1093/genetics/147.1.189. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Depaulis F., Brazier L., Mousset S., Turbe A., Veuille M. Selective sweep near the In(2L)t inversion breakpoint in an African population of Drosophila melanogaster. Genet Res. 2000 Oct;76(2):149–158. doi: 10.1017/s0016672300004626. [DOI] [PubMed] [Google Scholar]
  12. Depaulis F., Brazier L., Veuille M. Selective sweep at the Drosophila melanogaster Suppressor of Hairless locus and its association with the In(2L)t inversion polymorphism. Genetics. 1999 Jul;152(3):1017–1024. doi: 10.1093/genetics/152.3.1017. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Depaulis F., Mousset S., Veuille M. Haplotype tests using coalescent simulations conditional on the number of segregating sites. Mol Biol Evol. 2001 Jun;18(6):1136–1138. doi: 10.1093/oxfordjournals.molbev.a003885. [DOI] [PubMed] [Google Scholar]
  14. Fay J. C., Wu C. I. Hitchhiking under positive Darwinian selection. Genetics. 2000 Jul;155(3):1405–1413. doi: 10.1093/genetics/155.3.1405. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Fu Y. X., Li W. H. Statistical tests of neutrality of mutations. Genetics. 1993 Mar;133(3):693–709. doi: 10.1093/genetics/133.3.693. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Galtier N., Depaulis F., Barton N. H. Detecting bottlenecks and selective sweeps from DNA sequence polymorphism. Genetics. 2000 Jun;155(2):981–987. doi: 10.1093/genetics/155.2.981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Hudson R. R., Bailey K., Skarecky D., Kwiatowski J., Ayala F. J. Evidence for positive selection in the superoxide dismutase (Sod) region of Drosophila melanogaster. Genetics. 1994 Apr;136(4):1329–1340. doi: 10.1093/genetics/136.4.1329. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Hudson R. R., Kaplan N. L. Statistical properties of the number of recombination events in the history of a sample of DNA sequences. Genetics. 1985 Sep;111(1):147–164. doi: 10.1093/genetics/111.1.147. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Hudson R. R., Kreitman M., Aguadé M. A test of neutral molecular evolution based on nucleotide data. Genetics. 1987 May;116(1):153–159. doi: 10.1093/genetics/116.1.153. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Hudson R. R., Slatkin M., Maddison W. P. Estimation of levels of gene flow from DNA sequence data. Genetics. 1992 Oct;132(2):583–589. doi: 10.1093/genetics/132.2.583. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Hudson R. R., Sáez A. G., Ayala F. J. DNA variation at the Sod locus of Drosophila melanogaster: an unfolding story of natural selection. Proc Natl Acad Sci U S A. 1997 Jul 22;94(15):7725–7729. doi: 10.1073/pnas.94.15.7725. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Innan H., Tajima F. The amounts of nucleotide variation within and between allelic classes and the reconstruction of the common ancestral sequence in a population. Genetics. 1997 Nov;147(3):1431–1444. doi: 10.1093/genetics/147.3.1431. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Kirby D. A., Stephan W. Haplotype test reveals departure from neutrality in a segment of the white gene of Drosophila melanogaster. Genetics. 1995 Dec;141(4):1483–1490. doi: 10.1093/genetics/141.4.1483. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Kumar S., Tamura K., Nei M. MEGA: Molecular Evolutionary Genetics Analysis software for microcomputers. Comput Appl Biosci. 1994 Apr;10(2):189–191. doi: 10.1093/bioinformatics/10.2.189. [DOI] [PubMed] [Google Scholar]
  25. Meghlaoui G. K., Veuille M. Selection and methionine accumulation in the fat body protein 2 gene (FBP2), a duplicate of the Drosophila alcohol dehydrogenase (ADH) gene. J Mol Evol. 1997 Jan;44(1):23–32. doi: 10.1007/pl00006118. [DOI] [PubMed] [Google Scholar]
  26. Michalakis Y., Veuille M. Length variation of CAG/CAA trinucleotide repeats in natural populations of Drosophila melanogaster and its relation to the recombination rate. Genetics. 1996 Aug;143(4):1713–1725. doi: 10.1093/genetics/143.4.1713. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Moriyama E. N., Powell J. R. Intraspecific nuclear DNA variation in Drosophila. Mol Biol Evol. 1996 Jan;13(1):261–277. doi: 10.1093/oxfordjournals.molbev.a025563. [DOI] [PubMed] [Google Scholar]
  28. Nurminsky D., Aguiar D. D., Bustamante C. D., Hartl D. L. Chromosomal effects of rapid gene evolution in Drosophila melanogaster. Science. 2001 Jan 5;291(5501):128–130. doi: 10.1126/science.291.5501.128. [DOI] [PubMed] [Google Scholar]
  29. Rat L., Veuille M., Lepesant J. A. Drosophila fat body protein P6 and alcohol dehydrogenase are derived from a common ancestral protein. J Mol Evol. 1991 Aug;33(2):194–203. doi: 10.1007/BF02193634. [DOI] [PubMed] [Google Scholar]
  30. Richter B., Long M., Lewontin R. C., Nitasaka E. Nucleotide variation and conservation at the dpp locus, a gene controlling early development in Drosophila. Genetics. 1997 Feb;145(2):311–323. doi: 10.1093/genetics/145.2.311. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Rozas J., Rozas R. DnaSP version 3: an integrated program for molecular population genetics and molecular evolution analysis. Bioinformatics. 1999 Feb;15(2):174–175. doi: 10.1093/bioinformatics/15.2.174. [DOI] [PubMed] [Google Scholar]
  32. Simon M. A., Bowtell D. D., Dodson G. S., Laverty T. R., Rubin G. M. Ras1 and a putative guanine nucleotide exchange factor perform crucial steps in signaling by the sevenless protein tyrosine kinase. Cell. 1991 Nov 15;67(4):701–716. doi: 10.1016/0092-8674(91)90065-7. [DOI] [PubMed] [Google Scholar]
  33. Smith J. M., Haigh J. The hitch-hiking effect of a favourable gene. Genet Res. 1974 Feb;23(1):23–35. [PubMed] [Google Scholar]
  34. Tajima F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics. 1989 Nov;123(3):585–595. doi: 10.1093/genetics/123.3.585. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 1997 Dec 15;25(24):4876–4882. doi: 10.1093/nar/25.24.4876. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Veuille M., Bénassi V., Aulard S., Depaulis F. Allele-specific population structure of Drosophila melanogaster alcohol dehydrogenase at the molecular level. Genetics. 1998 Jun;149(2):971–981. doi: 10.1093/genetics/149.2.971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Watterson G. A. On the number of segregating sites in genetical models without recombination. Theor Popul Biol. 1975 Apr;7(2):256–276. doi: 10.1016/0040-5809(75)90020-9. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES