Skip to main content
Genetics logoLink to Genetics
. 2003 Mar;163(3):1109–1122. doi: 10.1093/genetics/163.3.1109

Arabidopsis MET1 cytosine methyltransferase mutants.

Mark W Kankel 1, Douglas E Ramsey 1, Trevor L Stokes 1, Susan K Flowers 1, Jeremy R Haag 1, Jeffrey A Jeddeloh 1, Nicole C Riddle 1, Michelle L Verbsky 1, Eric J Richards 1
PMCID: PMC1462485  PMID: 12663548

Abstract

We describe the isolation and characterization of two missense mutations in the cytosine-DNA-methyltransferase gene, MET1, from the flowering plant Arabidopsis thaliana. Both missense mutations, which affect the catalytic domain of the protein, led to a global reduction of cytosine methylation throughout the genome. Surprisingly, the met1-2 allele, with the weaker DNA hypomethylation phenotype, alters a well-conserved residue in methyltransferase signature motif I. The stronger met1-1 allele caused late flowering and a heterochronic delay in the juvenile-to-adult rosette leaf transition. The distribution of late-flowering phenotypes in a mapping population segregating met1-1 indicates that the flowering-time phenotype is caused by the accumulation of inherited defects at loci unlinked to the met1 mutation. The delay in flowering time is due in part to the formation and inheritance of hypomethylated fwa epialleles, but inherited defects at other loci are likely to contribute as well. Centromeric repeat arrays hypomethylated in met1-1 mutants are partially remethylated when introduced into a wild-type background, in contrast to genomic sequences hypomethylated in ddm1 mutants. ddm1 met1 double mutants were constructed to further our understanding of the mechanism of DDM1 action and the interaction between two major genetic loci affecting global cytosine methylation levels in Arabidopsis.

Full Text

The Full Text of this article is available as a PDF (456.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bartee L., Bender J. Two Arabidopsis methylation-deficiency mutations confer only partial effects on a methylated endogenous gene family. Nucleic Acids Res. 2001 May 15;29(10):2127–2134. doi: 10.1093/nar/29.10.2127. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bartee L., Malagnac F., Bender J. Arabidopsis cmt3 chromomethylase mutations block non-CG methylation and silencing of an endogenous gene. Genes Dev. 2001 Jul 15;15(14):1753–1758. doi: 10.1101/gad.905701. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Busslinger M., deBoer E., Wright S., Grosveld F. G., Flavell R. A. The sequence GGCmCGG is resistant to MspI cleavage. Nucleic Acids Res. 1983 Jun 11;11(11):3559–3569. doi: 10.1093/nar/11.11.3559. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cao X., Springer N. M., Muszynski M. G., Phillips R. L., Kaeppler S., Jacobsen S. E. Conserved plant genes with similarity to mammalian de novo DNA methyltransferases. Proc Natl Acad Sci U S A. 2000 Apr 25;97(9):4979–4984. doi: 10.1073/pnas.97.9.4979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cao Xiaofeng, Jacobsen Steven E. Locus-specific control of asymmetric and CpNpG methylation by the DRM and CMT3 methyltransferase genes. Proc Natl Acad Sci U S A. 2002 Jul 31;99 (Suppl 4):16491–16498. doi: 10.1073/pnas.162371599. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cao Xiaofeng, Jacobsen Steven E. Role of the arabidopsis DRM methyltransferases in de novo DNA methylation and gene silencing. Curr Biol. 2002 Jul 9;12(13):1138–1144. doi: 10.1016/s0960-9822(02)00925-9. [DOI] [PubMed] [Google Scholar]
  7. Cedar H., Solage A., Glaser G., Razin A. Direct detection of methylated cytosine in DNA by use of the restriction enzyme MspI. Nucleic Acids Res. 1979;6(6):2125–2132. doi: 10.1093/nar/6.6.2125. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Chen R. Z., Pettersson U., Beard C., Jackson-Grusby L., Jaenisch R. DNA hypomethylation leads to elevated mutation rates. Nature. 1998 Sep 3;395(6697):89–93. doi: 10.1038/25779. [DOI] [PubMed] [Google Scholar]
  9. Cheng X. Structure and function of DNA methyltransferases. Annu Rev Biophys Biomol Struct. 1995;24:293–318. doi: 10.1146/annurev.bb.24.060195.001453. [DOI] [PubMed] [Google Scholar]
  10. Cocciolone S. M., Cone K. C. Pl-Bh, an anthocyanin regulatory gene of maize that leads to variegated pigmentation. Genetics. 1993 Oct;135(2):575–588. doi: 10.1093/genetics/135.2.575. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Colot V., Rossignol J. L. Eukaryotic DNA methylation as an evolutionary device. Bioessays. 1999 May;21(5):402–411. doi: 10.1002/(SICI)1521-1878(199905)21:5<402::AID-BIES7>3.0.CO;2-B. [DOI] [PubMed] [Google Scholar]
  12. Dodge Jonathan E., Ramsahoye Bernard H., Wo Z. Galen, Okano Masaki, Li En. De novo methylation of MMLV provirus in embryonic stem cells: CpG versus non-CpG methylation. Gene. 2002 May 1;289(1-2):41–48. doi: 10.1016/s0378-1119(02)00469-9. [DOI] [PubMed] [Google Scholar]
  13. Finnegan E. J., Kovac K. A. Plant DNA methyltransferases. Plant Mol Biol. 2000 Jun;43(2-3):189–201. doi: 10.1023/a:1006427226972. [DOI] [PubMed] [Google Scholar]
  14. Finnegan E. J., Peacock W. J., Dennis E. S. Reduced DNA methylation in Arabidopsis thaliana results in abnormal plant development. Proc Natl Acad Sci U S A. 1996 Aug 6;93(16):8449–8454. doi: 10.1073/pnas.93.16.8449. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Fuks Francois, Hurd Paul J., Wolf Daniel, Nan Xinsheng, Bird Adrian P., Kouzarides Tony. The methyl-CpG-binding protein MeCP2 links DNA methylation to histone methylation. J Biol Chem. 2002 Nov 9;278(6):4035–4040. doi: 10.1074/jbc.M210256200. [DOI] [PubMed] [Google Scholar]
  16. Gendrel Anne-Valérie, Lippman Zachary, Yordan Cristy, Colot Vincent, Martienssen Robert A. Dependence of heterochromatic histone H3 methylation patterns on the Arabidopsis gene DDM1. Science. 2002 Jun 20;297(5588):1871–1873. doi: 10.1126/science.1074950. [DOI] [PubMed] [Google Scholar]
  17. Henikoff S., Comai L. A DNA methyltransferase homolog with a chromodomain exists in multiple polymorphic forms in Arabidopsis. Genetics. 1998 May;149(1):307–318. doi: 10.1093/genetics/149.1.307. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Holliday R., Pugh J. E. DNA modification mechanisms and gene activity during development. Science. 1975 Jan 24;187(4173):226–232. [PubMed] [Google Scholar]
  19. Jackson James P., Lindroth Anders M., Cao Xiaofeng, Jacobsen Steven E. Control of CpNpG DNA methylation by the KRYPTONITE histone H3 methyltransferase. Nature. 2002 Mar 17;416(6880):556–560. doi: 10.1038/nature731. [DOI] [PubMed] [Google Scholar]
  20. Jacobsen S. E., Sakai H., Finnegan E. J., Cao X., Meyerowitz E. M. Ectopic hypermethylation of flower-specific genes in Arabidopsis. Curr Biol. 2000 Feb 24;10(4):179–186. doi: 10.1016/s0960-9822(00)00324-9. [DOI] [PubMed] [Google Scholar]
  21. Jeddeloh J. A., Bender J., Richards E. J. The DNA methylation locus DDM1 is required for maintenance of gene silencing in Arabidopsis. Genes Dev. 1998 Jun 1;12(11):1714–1725. doi: 10.1101/gad.12.11.1714. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Jeddeloh J. A., Richards E. J. mCCG methylation in angiosperms. Plant J. 1996 May;9(5):579–586. doi: 10.1046/j.1365-313x.1996.9050579.x. [DOI] [PubMed] [Google Scholar]
  23. Jeddeloh J. A., Stokes T. L., Richards E. J. Maintenance of genomic methylation requires a SWI2/SNF2-like protein. Nat Genet. 1999 May;22(1):94–97. doi: 10.1038/8803. [DOI] [PubMed] [Google Scholar]
  24. Jenuwein T., Allis C. D. Translating the histone code. Science. 2001 Aug 10;293(5532):1074–1080. doi: 10.1126/science.1063127. [DOI] [PubMed] [Google Scholar]
  25. Johnson Lianna, Cao Xiaofeng, Jacobsen Steven. Interplay between two epigenetic marks. DNA methylation and histone H3 lysine 9 methylation. Curr Biol. 2002 Aug 20;12(16):1360–1367. doi: 10.1016/s0960-9822(02)00976-4. [DOI] [PubMed] [Google Scholar]
  26. Kakutani T. Genetic characterization of late-flowering traits induced by DNA hypomethylation mutation in Arabidopsis thaliana. Plant J. 1997 Dec;12(6):1447–1451. doi: 10.1046/j.1365-313x.1997.12061447.x. [DOI] [PubMed] [Google Scholar]
  27. Kakutani T., Jeddeloh J. A., Flowers S. K., Munakata K., Richards E. J. Developmental abnormalities and epimutations associated with DNA hypomethylation mutations. Proc Natl Acad Sci U S A. 1996 Oct 29;93(22):12406–12411. doi: 10.1073/pnas.93.22.12406. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Kakutani T., Jeddeloh J. A., Richards E. J. Characterization of an Arabidopsis thaliana DNA hypomethylation mutant. Nucleic Acids Res. 1995 Jan 11;23(1):130–137. doi: 10.1093/nar/23.1.130. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Kakutani T., Munakata K., Richards E. J., Hirochika H. Meiotically and mitotically stable inheritance of DNA hypomethylation induced by ddm1 mutation of Arabidopsis thaliana. Genetics. 1999 Feb;151(2):831–838. doi: 10.1093/genetics/151.2.831. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Kishimoto N., Sakai H., Jackson J., Jacobsen S. E., Meyerowitz E. M., Dennis E. S., Finnegan E. J. Site specificity of the Arabidopsis METI DNA methyltransferase demonstrated through hypermethylation of the superman locus. Plant Mol Biol. 2001 May;46(2):171–183. doi: 10.1023/a:1010636222327. [DOI] [PubMed] [Google Scholar]
  31. Li E., Bestor T. H., Jaenisch R. Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell. 1992 Jun 12;69(6):915–926. doi: 10.1016/0092-8674(92)90611-f. [DOI] [PubMed] [Google Scholar]
  32. Lindroth A. M., Cao X., Jackson J. P., Zilberman D., McCallum C. M., Henikoff S., Jacobsen S. E. Requirement of CHROMOMETHYLASE3 for maintenance of CpXpG methylation. Science. 2001 May 10;292(5524):2077–2080. doi: 10.1126/science.1059745. [DOI] [PubMed] [Google Scholar]
  33. Malagnac F., Wendel B., Goyon C., Faugeron G., Zickler D., Rossignol J. L., Noyer-Weidner M., Vollmayr P., Trautner T. A., Walter J. A gene essential for de novo methylation and development in Ascobolus reveals a novel type of eukaryotic DNA methyltransferase structure. Cell. 1997 Oct 17;91(2):281–290. doi: 10.1016/s0092-8674(00)80410-9. [DOI] [PubMed] [Google Scholar]
  34. Miura A., Yonebayashi S., Watanabe K., Toyama T., Shimada H., Kakutani T. Mobilization of transposons by a mutation abolishing full DNA methylation in Arabidopsis. Nature. 2001 May 10;411(6834):212–214. doi: 10.1038/35075612. [DOI] [PubMed] [Google Scholar]
  35. Okano M., Bell D. W., Haber D. A., Li E. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell. 1999 Oct 29;99(3):247–257. doi: 10.1016/s0092-8674(00)81656-6. [DOI] [PubMed] [Google Scholar]
  36. Papa C. M., Springer N. M., Muszynski M. G., Meeley R., Kaeppler S. M. Maize chromomethylase Zea methyltransferase2 is required for CpNpG methylation. Plant Cell. 2001 Aug;13(8):1919–1928. doi: 10.1105/TPC.010064. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Pradhan S., Bacolla A., Wells R. D., Roberts R. J. Recombinant human DNA (cytosine-5) methyltransferase. I. Expression, purification, and comparison of de novo and maintenance methylation. J Biol Chem. 1999 Nov 12;274(46):33002–33010. doi: 10.1074/jbc.274.46.33002. [DOI] [PubMed] [Google Scholar]
  38. Pósfai J., Bhagwat A. S., Pósfai G., Roberts R. J. Predictive motifs derived from cytosine methyltransferases. Nucleic Acids Res. 1989 Apr 11;17(7):2421–2435. doi: 10.1093/nar/17.7.2421. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Rice J. C., Allis C. D. Code of silence. Nature. 2001 Nov 15;414(6861):258–261. doi: 10.1038/35104721. [DOI] [PubMed] [Google Scholar]
  40. Richards Eric J. Chromatin methylation: who's on first? Curr Biol. 2002 Oct 15;12(20):R694–R695. doi: 10.1016/s0960-9822(02)01208-3. [DOI] [PubMed] [Google Scholar]
  41. Ronemus M. J., Galbiati M., Ticknor C., Chen J., Dellaporta S. L. Demethylation-induced developmental pleiotropy in Arabidopsis. Science. 1996 Aug 2;273(5275):654–657. doi: 10.1126/science.273.5275.654. [DOI] [PubMed] [Google Scholar]
  42. Singer T., Yordan C., Martienssen R. A. Robertson's Mutator transposons in A. thaliana are regulated by the chromatin-remodeling gene Decrease in DNA Methylation (DDM1). Genes Dev. 2001 Mar 1;15(5):591–602. doi: 10.1101/gad.193701. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Soppe W. J., Jacobsen S. E., Alonso-Blanco C., Jackson J. P., Kakutani T., Koornneef M., Peeters A. J. The late flowering phenotype of fwa mutants is caused by gain-of-function epigenetic alleles of a homeodomain gene. Mol Cell. 2000 Oct;6(4):791–802. doi: 10.1016/s1097-2765(05)00090-0. [DOI] [PubMed] [Google Scholar]
  44. Soppe Wim J. J., Jasencakova Zuzana, Houben Andreas, Kakutani Tetsuji, Meister Armin, Huang Michael S., Jacobsen Steven E., Schubert Ingo, Fransz Paul F. DNA methylation controls histone H3 lysine 9 methylation and heterochromatin assembly in Arabidopsis. EMBO J. 2002 Dec 2;21(23):6549–6559. doi: 10.1093/emboj/cdf657. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Tamaru H., Selker E. U. A histone H3 methyltransferase controls DNA methylation in Neurospora crassa. Nature. 2001 Nov 15;414(6861):277–283. doi: 10.1038/35104508. [DOI] [PubMed] [Google Scholar]
  46. Telfer A., Bollman K. M., Poethig R. S. Phase change and the regulation of trichome distribution in Arabidopsis thaliana. Development. 1997 Feb;124(3):645–654. doi: 10.1242/dev.124.3.645. [DOI] [PubMed] [Google Scholar]
  47. Ungerer Mark C., Halldorsdottir Solveig S., Modliszewski Jennifer L., Mackay Trudy F. C., Purugganan Michael D. Quantitative trait loci for inflorescence development in Arabidopsis thaliana. Genetics. 2002 Mar;160(3):1133–1151. doi: 10.1093/genetics/160.3.1133. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Vongs A., Kakutani T., Martienssen R. A., Richards E. J. Arabidopsis thaliana DNA methylation mutants. Science. 1993 Jun 25;260(5116):1926–1928. doi: 10.1126/science.8316832. [DOI] [PubMed] [Google Scholar]
  49. Wilkinson C. R., Bartlett R., Nurse P., Bird A. P. The fission yeast gene pmt1+ encodes a DNA methyltransferase homologue. Nucleic Acids Res. 1995 Jan 25;23(2):203–210. doi: 10.1093/nar/23.2.203. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES