Skip to main content
Genetics logoLink to Genetics
. 2003 Apr;163(4):1375–1387. doi: 10.1093/genetics/163.4.1375

Transvection at the end of the truncated chromosome in Drosophila melanogaster.

Mikhail Savitsky 1, Tatyana Kahn 1, Ekaterina Pomerantseva 1, Pavel Georgiev 1
PMCID: PMC1462527  PMID: 12702682

Abstract

The phenomenon of transvection is well known for the Drosophila yellow locus. Thus enhancers of a promoterless yellow locus in one homologous chromosome can activate the yellow promoter in the other chromosome where the enhancers are inactive or deleted. In this report, we examined the requirements for trans-activation of the yellow promoter at the end of the deficient chromosome. A number of truncated chromosomes ending in different areas of the yellow regulatory region were examined in combination with the promoterless y alleles. We found that trans-activation of the yellow promoter at the end of a deficient chromosome required approximately 6 kb of an additional upstream sequence. The nature of upstream sequences affected the strength of transvection: addition of gypsy sequences induced stronger trans-activation than addition of HeT-A or yellow sequences. Only the promoter proximal region (within -158 bp of the yellow transcription start) was essential for trans-activation; i.e., transvection did not require extensive homology in the yellow upstream region. Finally, the yellow enhancers located on the two pairing chromosomes could cooperatively activate one yellow promoter.

Full Text

The Full Text of this article is available as a PDF (295.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams M. D., Celniker S. E., Holt R. A., Evans C. A., Gocayne J. D., Amanatides P. G., Scherer S. E., Li P. W., Hoskins R. A., Galle R. F. The genome sequence of Drosophila melanogaster. Science. 2000 Mar 24;287(5461):2185–2195. doi: 10.1126/science.287.5461.2185. [DOI] [PubMed] [Google Scholar]
  2. Belenkaya T., Barseguyan K., Hovhannisyan H., Biryukova I., Kochieva E. Z., Georgiev P. P element sequences can compensate for a deletion of the yellow regulatory region in Drosophila melanogaster. Mol Gen Genet. 1998 Jul;259(1):79–87. doi: 10.1007/s004380050791. [DOI] [PubMed] [Google Scholar]
  3. Bell A. C., West A. G., Felsenfeld G. Insulators and boundaries: versatile regulatory elements in the eukaryotic genome. Science. 2001 Jan 19;291(5503):447–450. doi: 10.1126/science.291.5503.447. [DOI] [PubMed] [Google Scholar]
  4. Biessmann H., Carter S. B., Mason J. M. Chromosome ends in Drosophila without telomeric DNA sequences. Proc Natl Acad Sci U S A. 1990 Mar;87(5):1758–1761. doi: 10.1073/pnas.87.5.1758. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Biessmann H., Mason J. M., Ferry K., d'Hulst M., Valgeirsdottir K., Traverse K. L., Pardue M. L. Addition of telomere-associated HeT DNA sequences "heals" broken chromosome ends in Drosophila. Cell. 1990 May 18;61(4):663–673. doi: 10.1016/0092-8674(90)90478-w. [DOI] [PubMed] [Google Scholar]
  6. Biessmann H., Mason J. M. Progressive loss of DNA sequences from terminal chromosome deficiencies in Drosophila melanogaster. EMBO J. 1988 Apr;7(4):1081–1086. doi: 10.1002/j.1460-2075.1988.tb02916.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Biessmann H., Mason J. M. Telomere maintenance without telomerase. Chromosoma. 1997 Jul;106(2):63–69. doi: 10.1007/s004120050225. [DOI] [PubMed] [Google Scholar]
  8. Biessmann H., Valgeirsdottir K., Lofsky A., Chin C., Ginther B., Levis R. W., Pardue M. L. HeT-A, a transposable element specifically involved in "healing" broken chromosome ends in Drosophila melanogaster. Mol Cell Biol. 1992 Sep;12(9):3910–3918. doi: 10.1128/mcb.12.9.3910. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Blackwood E. M., Kadonaga J. T. Going the distance: a current view of enhancer action. Science. 1998 Jul 3;281(5373):60–63. doi: 10.1126/science.281.5373.60. [DOI] [PubMed] [Google Scholar]
  10. Chen Ji-Long, Huisinga Kathryn L., Viering Michaela M., Ou Sharon A., Wu C-ting, Geyer Pamela K. Enhancer action in trans is permitted throughout the Drosophila genome. Proc Natl Acad Sci U S A. 2002 Mar 19;99(6):3723–3728. doi: 10.1073/pnas.062447999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Danilevskaya O. N., Arkhipova I. R., Traverse K. L., Pardue M. L. Promoting in tandem: the promoter for telomere transposon HeT-A and implications for the evolution of retroviral LTRs. Cell. 1997 Mar 7;88(5):647–655. doi: 10.1016/s0092-8674(00)81907-8. [DOI] [PubMed] [Google Scholar]
  12. Dorsett D. Distant liaisons: long-range enhancer-promoter interactions in Drosophila. Curr Opin Genet Dev. 1999 Oct;9(5):505–514. doi: 10.1016/s0959-437x(99)00002-7. [DOI] [PubMed] [Google Scholar]
  13. Dorsett D. Potentiation of a polyadenylylation site by a downstream protein-DNA interaction. Proc Natl Acad Sci U S A. 1990 Jun;87(11):4373–4377. doi: 10.1073/pnas.87.11.4373. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Fanti L., Giovinazzo G., Berloco M., Pimpinelli S. The heterochromatin protein 1 prevents telomere fusions in Drosophila. Mol Cell. 1998 Nov;2(5):527–538. doi: 10.1016/s1097-2765(00)80152-5. [DOI] [PubMed] [Google Scholar]
  15. Gause M., Georgiev P. Interactions between su(Hw)-binding regions in neighboring y2 and scD1 alleles hinder trans-activation of the y2 promoter by yellow enhancers located on a homologous chromosome. Mol Gen Genet. 2000 Oct;264(3):222–226. doi: 10.1007/s004380000277. [DOI] [PubMed] [Google Scholar]
  16. Georgiev P. G., Kiselev S. L., Simonova O. B., Gerasimova T. I. A novel transposition system in Drosophila melanogaster depending on the Stalker mobile genetic element. EMBO J. 1990 Jul;9(7):2037–2044. doi: 10.1002/j.1460-2075.1990.tb07370.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Georgiev P., Kozycina M. Interaction between mutations in the suppressor of Hairy wing and modifier of mdg4 genes of Drosophila melanogaster affecting the phenotype of gypsy-induced mutations. Genetics. 1996 Feb;142(2):425–436. doi: 10.1093/genetics/142.2.425. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Geyer P. K., Corces V. G. DNA position-specific repression of transcription by a Drosophila zinc finger protein. Genes Dev. 1992 Oct;6(10):1865–1873. doi: 10.1101/gad.6.10.1865. [DOI] [PubMed] [Google Scholar]
  19. Geyer P. K., Corces V. G. Separate regulatory elements are responsible for the complex pattern of tissue-specific and developmental transcription of the yellow locus in Drosophila melanogaster. Genes Dev. 1987 Nov;1(9):996–1004. doi: 10.1101/gad.1.9.996. [DOI] [PubMed] [Google Scholar]
  20. Geyer P. K., Green M. M., Corces V. G. Tissue-specific transcriptional enhancers may act in trans on the gene located in the homologous chromosome: the molecular basis of transvection in Drosophila. EMBO J. 1990 Jul;9(7):2247–2256. doi: 10.1002/j.1460-2075.1990.tb07395.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Geyer P. K., Spana C., Corces V. G. On the molecular mechanism of gypsy-induced mutations at the yellow locus of Drosophila melanogaster. EMBO J. 1986 Oct;5(10):2657–2662. doi: 10.1002/j.1460-2075.1986.tb04548.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Geyer P. K. The role of insulator elements in defining domains of gene expression. Curr Opin Genet Dev. 1997 Apr;7(2):242–248. doi: 10.1016/s0959-437x(97)80134-7. [DOI] [PubMed] [Google Scholar]
  23. Goldsborough A. S., Kornberg T. B. Reduction of transcription by homologue asynapsis in Drosophila imaginal discs. Nature. 1996 Jun 27;381(6585):807–810. doi: 10.1038/381807a0. [DOI] [PubMed] [Google Scholar]
  24. Golubovsky M. D., Konev A. Y., Walter M. F., Biessmann H., Mason J. M. Terminal retrotransposons activate a subtelomeric white transgene at the 2L telomere in Drosophila. Genetics. 2001 Jul;158(3):1111–1123. doi: 10.1093/genetics/158.3.1111. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Harrison D. A., Gdula D. A., Coyne R. S., Corces V. G. A leucine zipper domain of the suppressor of Hairy-wing protein mediates its repressive effect on enhancer function. Genes Dev. 1993 Oct;7(10):1966–1978. doi: 10.1101/gad.7.10.1966. [DOI] [PubMed] [Google Scholar]
  26. Holdridge C., Dorsett D. Repression of hsp70 heat shock gene transcription by the suppressor of hairy-wing protein of Drosophila melanogaster. Mol Cell Biol. 1991 Apr;11(4):1894–1900. doi: 10.1128/mcb.11.4.1894. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Kahn T., Savitsky M., Georgiev P. Attachment of HeT-A sequences to chromosomal termini in Drosophila melanogaster may occur by different mechanisms. Mol Cell Biol. 2000 Oct;20(20):7634–7642. doi: 10.1128/mcb.20.20.7634-7642.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Marlor R. L., Parkhurst S. M., Corces V. G. The Drosophila melanogaster gypsy transposable element encodes putative gene products homologous to retroviral proteins. Mol Cell Biol. 1986 Apr;6(4):1129–1134. doi: 10.1128/mcb.6.4.1129. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Martin M., Meng Y. B., Chia W. Regulatory elements involved in the tissue-specific expression of the yellow gene of Drosophila. Mol Gen Genet. 1989 Jul;218(1):118–126. doi: 10.1007/BF00330574. [DOI] [PubMed] [Google Scholar]
  30. Mason J. M., Haoudi A., Konev A. Y., Kurenova E., Walter M. F., Biessmann H. Control of telomere elongation and telomeric silencing in Drosophila melanogaster. Genetica. 2000;109(1-2):61–70. doi: 10.1023/a:1026548503320. [DOI] [PubMed] [Google Scholar]
  31. Mikhailovsky S., Belenkaya T., Georgiev P. Broken chromosomal ends can be elongated by conversion in Drosophila melanogaster. Chromosoma. 1999 May;108(2):114–120. doi: 10.1007/s004120050358. [DOI] [PubMed] [Google Scholar]
  32. Morris J. R., Chen J. L., Geyer P. K., Wu C. T. Two modes of transvection: enhancer action in trans and bypass of a chromatin insulator in cis. Proc Natl Acad Sci U S A. 1998 Sep 1;95(18):10740–10745. doi: 10.1073/pnas.95.18.10740. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Morris J. R., Chen J., Filandrinos S. T., Dunn R. C., Fisk R., Geyer P. K., Wu C. An analysis of transvection at the yellow locus of Drosophila melanogaster. Genetics. 1999 Feb;151(2):633–651. doi: 10.1093/genetics/151.2.633. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Morris J. R., Geyer P. K., Wu C. T. Core promoter elements can regulate transcription on a separate chromosome in trans. Genes Dev. 1999 Feb 1;13(3):253–258. doi: 10.1101/gad.13.3.253. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Nash W. G., Yarkin R. J. Genetic regulation and pattern formation: a study of the yellow locus in Drosophila melanogaster. Genet Res. 1974 Aug;24(1):19–26. doi: 10.1017/s0016672300015044. [DOI] [PubMed] [Google Scholar]
  36. Pardue M. L., DeBaryshe P. G. Telomeres and telomerase: more than the end of the line. Chromosoma. 1999 May;108(2):73–82. doi: 10.1007/s004120050354. [DOI] [PubMed] [Google Scholar]
  37. Pardue M. L., Debaryshe P. G. Drosophila telomere transposons: genetically active elements in heterochromatin. Genetica. 2000;109(1-2):45–52. doi: 10.1023/a:1026540301503. [DOI] [PubMed] [Google Scholar]
  38. Parkhurst S. M., Corces V. G. Interactions among the gypsy transposable element and the yellow and the suppressor of hairy-wing loci in Drosophila melanogaster. Mol Cell Biol. 1986 Jan;6(1):47–53. doi: 10.1128/mcb.6.1.47. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Savitsky Mikhail, Kravchuk Oksana, Melnikova Larisa, Georgiev Pavel. Heterochromatin protein 1 is involved in control of telomere elongation in Drosophila melanogaster. Mol Cell Biol. 2002 May;22(9):3204–3218. doi: 10.1128/MCB.22.9.3204-3218.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Scott K. C., Taubman A. D., Geyer P. K. Enhancer blocking by the Drosophila gypsy insulator depends upon insulator anatomy and enhancer strength. Genetics. 1999 Oct;153(2):787–798. doi: 10.1093/genetics/153.2.787. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Sipos L., Mihály J., Karch F., Schedl P., Gausz J., Gyurkovics H. Transvection in the Drosophila Abd-B domain: extensive upstream sequences are involved in anchoring distant cis-regulatory regions to the promoter. Genetics. 1998 Jun;149(2):1031–1050. doi: 10.1093/genetics/149.2.1031. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Spana C., Corces V. G. DNA bending is a determinant of binding specificity for a Drosophila zinc finger protein. Genes Dev. 1990 Sep;4(9):1505–1515. doi: 10.1101/gad.4.9.1505. [DOI] [PubMed] [Google Scholar]
  43. Traverse K. L., Pardue M. L. A spontaneously opened ring chromosome of Drosophila melanogaster has acquired He-T DNA sequences at both new telomeres. Proc Natl Acad Sci U S A. 1988 Nov;85(21):8116–8120. doi: 10.1073/pnas.85.21.8116. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Walter M. F., Black B. C., Afshar G., Kermabon A. Y., Wright T. R., Biessmann H. Temporal and spatial expression of the yellow gene in correlation with cuticle formation and dopa decarboxylase activity in Drosophila development. Dev Biol. 1991 Sep;147(1):32–45. doi: 10.1016/s0012-1606(05)80005-3. [DOI] [PubMed] [Google Scholar]
  45. West Adam G., Gaszner Miklos, Felsenfeld Gary. Insulators: many functions, many mechanisms. Genes Dev. 2002 Feb 1;16(3):271–288. doi: 10.1101/gad.954702. [DOI] [PubMed] [Google Scholar]
  46. Wu C. T., Morris J. R. Transvection and other homology effects. Curr Opin Genet Dev. 1999 Apr;9(2):237–246. doi: 10.1016/S0959-437X(99)80035-5. [DOI] [PubMed] [Google Scholar]
  47. Zhou J., Ashe H., Burks C., Levine M. Characterization of the transvection mediating region of the abdominal-B locus in Drosophila. Development. 1999 Jun;126(14):3057–3065. doi: 10.1242/dev.126.14.3057. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES