Skip to main content
Genetics logoLink to Genetics
. 2003 Apr;163(4):1483–1496. doi: 10.1093/genetics/163.4.1483

Regulating general mutation rates: examination of the hypermutable state model for Cairnsian adaptive mutation.

John R Roth 1, Eric Kofoid 1, Frederick P Roth 1, Otto G Berg 1, Jon Seger 1, Dan I Andersson 1
PMCID: PMC1462528  PMID: 12702691

Abstract

In the lac adaptive mutation system of Cairns, selected mutant colonies but not unselected mutant types appear to arise from a nongrowing population of Escherichia coli. The general mutagenesis suffered by the selected mutants has been interpreted as support for the idea that E. coli possesses an evolved (and therefore beneficial) mechanism that increases the mutation rate in response to stress (the hypermutable state model, HSM). This mechanism is proposed to allow faster genetic adaptation to stressful conditions and to explain why mutations appear directed to useful sites. Analysis of the HSM reveals that it requires implausibly intense mutagenesis (10(5) times the unselected rate) and even then cannot account for the behavior of the Cairns system. The assumptions of the HSM predict that selected revertants will carry an average of eight deleterious null mutations and thus seem unlikely to be successful in long-term evolution. The experimentally observed 35-fold increase in the level of general mutagenesis cannot account for even one Lac(+) revertant from a mutagenized subpopulation of 10(5) cells (the number proposed to enter the hypermutable state). We conclude that temporary general mutagenesis during stress is unlikely to provide a long-term selective advantage in this or any similar genetic system.

Full Text

The Full Text of this article is available as a PDF (263.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andersson D. I., Slechta E. S., Roth J. R. Evidence that gene amplification underlies adaptive mutability of the bacterial lac operon. Science. 1998 Nov 6;282(5391):1133–1135. doi: 10.1126/science.282.5391.1133. [DOI] [PubMed] [Google Scholar]
  2. Arjan J. A., Visser M., Zeyl C. W., Gerrish P. J., Blanchard J. L., Lenski R. E. Diminishing returns from mutation supply rate in asexual populations. Science. 1999 Jan 15;283(5400):404–406. doi: 10.1126/science.283.5400.404. [DOI] [PubMed] [Google Scholar]
  3. Bull H. J., Lombardo M. J., Rosenberg S. M. Stationary-phase mutation in the bacterial chromosome: recombination protein and DNA polymerase IV dependence. Proc Natl Acad Sci U S A. 2001 Jul 17;98(15):8334–8341. doi: 10.1073/pnas.151009798. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bunny Kim, Liu Jing, Roth John. Phenotypes of lexA mutations in Salmonella enterica: evidence for a lethal lexA null phenotype due to the Fels-2 prophage. J Bacteriol. 2002 Nov;184(22):6235–6249. doi: 10.1128/JB.184.22.6235-6249.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cairns J., Foster P. L. Adaptive reversion of a frameshift mutation in Escherichia coli. Genetics. 1991 Aug;128(4):695–701. doi: 10.1093/genetics/128.4.695. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Drake J. W. A constant rate of spontaneous mutation in DNA-based microbes. Proc Natl Acad Sci U S A. 1991 Aug 15;88(16):7160–7164. doi: 10.1073/pnas.88.16.7160. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Drake J. W. The distribution of rates of spontaneous mutation over viruses, prokaryotes, and eukaryotes. Ann N Y Acad Sci. 1999 May 18;870:100–107. doi: 10.1111/j.1749-6632.1999.tb08870.x. [DOI] [PubMed] [Google Scholar]
  8. Foster P. L. Adaptive mutation: implications for evolution. Bioessays. 2000 Dec;22(12):1067–1074. doi: 10.1002/1521-1878(200012)22:12<1067::AID-BIES4>3.0.CO;2-Q. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Foster P. L., Cairns J. Mechanisms of directed mutation. Genetics. 1992 Aug;131(4):783–789. doi: 10.1093/genetics/131.4.783. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Foster P. L. Population dynamics of a Lac- strain of Escherichia coli during selection for lactose utilization. Genetics. 1994 Oct;138(2):253–261. doi: 10.1093/genetics/138.2.253. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Foster P. L., Trimarchi J. M. Adaptive reversion of a frameshift mutation in Escherichia coli by simple base deletions in homopolymeric runs. Science. 1994 Jul 15;265(5170):407–409. doi: 10.1126/science.8023164. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Gerrish P. J., Lenski R. E. The fate of competing beneficial mutations in an asexual population. Genetica. 1998;102-103(1-6):127–144. [PubMed] [Google Scholar]
  13. Giraud A., Matic I., Tenaillon O., Clara A., Radman M., Fons M., Taddei F. Costs and benefits of high mutation rates: adaptive evolution of bacteria in the mouse gut. Science. 2001 Mar 30;291(5513):2606–2608. doi: 10.1126/science.1056421. [DOI] [PubMed] [Google Scholar]
  14. Hall B. G. Selection-induced mutations. Curr Opin Genet Dev. 1992 Dec;2(6):943–946. doi: 10.1016/s0959-437x(05)80120-0. [DOI] [PubMed] [Google Scholar]
  15. Hall B. G. Spontaneous point mutations that occur more often when advantageous than when neutral. Genetics. 1990 Sep;126(1):5–16. doi: 10.1093/genetics/126.1.5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Hendrickson Heather, Slechta E. Susan, Bergthorsson Ulfar, Andersson Dan I., Roth John R. Amplification-mutagenesis: evidence that "directed" adaptive mutation and general hypermutability result from growth with a selected gene amplification. Proc Natl Acad Sci U S A. 2002 Feb 5;99(4):2164–2169. doi: 10.1073/pnas.032680899. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Hughes D., Andersson D. I. Carbon starvation of Salmonella typhimurium does not cause a general increase of mutation rates. J Bacteriol. 1997 Nov;179(21):6688–6691. doi: 10.1128/jb.179.21.6688-6691.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Lenski R. E., Mittler J. E. The directed mutation controversy and neo-Darwinism. Science. 1993 Jan 8;259(5092):188–194. doi: 10.1126/science.7678468. [DOI] [PubMed] [Google Scholar]
  19. Lenski R. E., Slatkin M., Ayala F. J. Mutation and selection in bacterial populations: alternatives to the hypothesis of directed mutation. Proc Natl Acad Sci U S A. 1989 Apr;86(8):2775–2778. doi: 10.1073/pnas.86.8.2775. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. McKenzie G. J., Harris R. S., Lee P. L., Rosenberg S. M. The SOS response regulates adaptive mutation. Proc Natl Acad Sci U S A. 2000 Jun 6;97(12):6646–6651. doi: 10.1073/pnas.120161797. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. McKenzie G. J., Rosenberg S. M. Adaptive mutations, mutator DNA polymerases and genetic change strategies of pathogens. Curr Opin Microbiol. 2001 Oct;4(5):586–594. doi: 10.1016/s1369-5274(00)00255-1. [DOI] [PubMed] [Google Scholar]
  22. Miller J. H., Suthar A., Tai J., Yeung A., Truong C., Stewart J. L. Direct selection for mutators in Escherichia coli. J Bacteriol. 1999 Mar;181(5):1576–1584. doi: 10.1128/jb.181.5.1576-1584.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Orr H. A. The rate of adaptation in asexuals. Genetics. 2000 Jun;155(2):961–968. doi: 10.1093/genetics/155.2.961. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Peck J. R. A ruby in the rubbish: beneficial mutations, deleterious mutations and the evolution of sex. Genetics. 1994 Jun;137(2):597–606. doi: 10.1093/genetics/137.2.597. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Radman M., Matic I., Taddei F. Evolution of evolvability. Ann N Y Acad Sci. 1999 May 18;870:146–155. doi: 10.1111/j.1749-6632.1999.tb08874.x. [DOI] [PubMed] [Google Scholar]
  26. Radman M., Taddei F., Matic I. Evolution-driving genes. Res Microbiol. 2000 Mar;151(2):91–95. doi: 10.1016/s0923-2508(00)00122-4. [DOI] [PubMed] [Google Scholar]
  27. Rosenberg S. M. Evolving responsively: adaptive mutation. Nat Rev Genet. 2001 Jul;2(7):504–515. doi: 10.1038/35080556. [DOI] [PubMed] [Google Scholar]
  28. Rosenberg S. M., Longerich S., Gee P., Harris R. S. Adaptive mutation by deletions in small mononucleotide repeats. Science. 1994 Jul 15;265(5170):405–407. doi: 10.1126/science.8023163. [DOI] [PubMed] [Google Scholar]
  29. Rosenberg S. M. Mutation for survival. Curr Opin Genet Dev. 1997 Dec;7(6):829–834. doi: 10.1016/s0959-437x(97)80047-0. [DOI] [PubMed] [Google Scholar]
  30. Schmid M. B., Kapur N., Isaacson D. R., Lindroos P., Sharpe C. Genetic analysis of temperature-sensitive lethal mutants of Salmonella typhimurium. Genetics. 1989 Dec;123(4):625–633. doi: 10.1093/genetics/123.4.625. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Slechta E. Susan, Harold Jennifer, Andersson Dan I., Roth John R. The effect of genomic position on reversion of a lac frameshift mutation (lacIZ33) during non-lethal selection (adaptive mutation). Mol Microbiol. 2002 May;44(4):1017–1032. doi: 10.1046/j.1365-2958.2002.02934.x. [DOI] [PubMed] [Google Scholar]
  32. Taddei F., Radman M., Maynard-Smith J., Toupance B., Gouyon P. H., Godelle B. Role of mutator alleles in adaptive evolution. Nature. 1997 Jun 12;387(6634):700–702. doi: 10.1038/42696. [DOI] [PubMed] [Google Scholar]
  33. Torkelson J., Harris R. S., Lombardo M. J., Nagendran J., Thulin C., Rosenberg S. M. Genome-wide hypermutation in a subpopulation of stationary-phase cells underlies recombination-dependent adaptive mutation. EMBO J. 1997 Jun 2;16(11):3303–3311. doi: 10.1093/emboj/16.11.3303. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES