Skip to main content
Genetics logoLink to Genetics
. 2003 Apr;163(4):1457–1465. doi: 10.1093/genetics/163.4.1457

The synergistic activation of FLOWERING LOCUS C by FRIGIDA and a new flowering gene AERIAL ROSETTE 1 underlies a novel morphology in Arabidopsis.

Branislava Poduska 1, Tania Humphrey 1, Antje Redweik 1, Vojislava Grbić 1
PMCID: PMC1462530  PMID: 12702689

Abstract

The genetic changes underlying the diversification of plant forms represent a key question in understanding plant macroevolution. To understand the mechanisms leading to novel plant morphologies we investigated the Sy-0 ecotype of Arabidopsis that forms an enlarged basal rosette of leaves, develops aerial rosettes in the axils of cauline leaves, and exhibits inflorescence and floral reversion. Here we show that this heterochronic shift in reproductive development of all shoot meristems requires interaction between dominant alleles at AERIAL ROSETTE 1 (ART1), FRIGIDA (FRI), and FLOWERING LOCUS C (FLC) loci. ART1 is a new flowering gene that maps 14 cM proximal to FLC on chromosome V. ART1 activates FLC expression through a novel flowering pathway that is independent of FRI and independent of the autonomous and vernalization pathways. Synergistic activation of the floral repressor FLC by ART1 and FRI is required for delayed onset of reproductive development of all shoot meristems, leading to the Sy-0 phenotype. These results demonstrate that modulation in flowering-time genes is one of the mechanisms leading to morphological novelties.

Full Text

The Full Text of this article is available as a PDF (417.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alonso-Blanco C., El-Assal S. E., Coupland G., Koornneef M. Analysis of natural allelic variation at flowering time loci in the Landsberg erecta and Cape Verde Islands ecotypes of Arabidopsis thaliana. Genetics. 1998 Jun;149(2):749–764. doi: 10.1093/genetics/149.2.749. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Colasanti J., Yuan Z., Sundaresan V. The indeterminate gene encodes a zinc finger protein and regulates a leaf-generated signal required for the transition to flowering in maize. Cell. 1998 May 15;93(4):593–603. doi: 10.1016/s0092-8674(00)81188-5. [DOI] [PubMed] [Google Scholar]
  3. Grbić B., Bleecker A. B. An altered body plan is conferred on Arabidopsis plants carrying dominant alleles of two genes. Development. 1996 Aug;122(8):2395–2403. doi: 10.1242/dev.122.8.2395. [DOI] [PubMed] [Google Scholar]
  4. Johanson U., West J., Lister C., Michaels S., Amasino R., Dean C. Molecular analysis of FRIGIDA, a major determinant of natural variation in Arabidopsis flowering time. Science. 2000 Oct 13;290(5490):344–347. doi: 10.1126/science.290.5490.344. [DOI] [PubMed] [Google Scholar]
  5. Mandel M. A., Yanofsky M. F. A gene triggering flower formation in Arabidopsis. Nature. 1995 Oct 12;377(6549):522–524. doi: 10.1038/377522a0. [DOI] [PubMed] [Google Scholar]
  6. Michaels S. D., Amasino R. M. FLOWERING LOCUS C encodes a novel MADS domain protein that acts as a repressor of flowering. Plant Cell. 1999 May;11(5):949–956. doi: 10.1105/tpc.11.5.949. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Okamuro J. K., den Boer B. G., Lotys-Prass C., Szeto W., Jofuku K. D. Flowers into shoots: photo and hormonal control of a meristem identity switch in Arabidopsis. Proc Natl Acad Sci U S A. 1996 Nov 26;93(24):13831–13836. doi: 10.1073/pnas.93.24.13831. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Parcy François, Bomblies Kirsten, Weigel Detlef. Interaction of LEAFY, AGAMOUS and TERMINAL FLOWER1 in maintaining floral meristem identity in Arabidopsis. Development. 2002 May;129(10):2519–2527. doi: 10.1242/dev.129.10.2519. [DOI] [PubMed] [Google Scholar]
  9. Pouteau S., Nicholls D., Tooke F., Coen E., Battey N. The induction and maintenance of flowering in Impatiens. Development. 1997 Sep;124(17):3343–3351. doi: 10.1242/dev.124.17.3343. [DOI] [PubMed] [Google Scholar]
  10. Ratcliffe O. J., Amaya I., Vincent C. A., Rothstein S., Carpenter R., Coen E. S., Bradley D. J. A common mechanism controls the life cycle and architecture of plants. Development. 1998 May;125(9):1609–1615. doi: 10.1242/dev.125.9.1609. [DOI] [PubMed] [Google Scholar]
  11. Sheldon C. C., Burn J. E., Perez P. P., Metzger J., Edwards J. A., Peacock W. J., Dennis E. S. The FLF MADS box gene: a repressor of flowering in Arabidopsis regulated by vernalization and methylation. Plant Cell. 1999 Mar;11(3):445–458. doi: 10.1105/tpc.11.3.445. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Sheldon C. C., Rouse D. T., Finnegan E. J., Peacock W. J., Dennis E. S. The molecular basis of vernalization: the central role of FLOWERING LOCUS C (FLC). Proc Natl Acad Sci U S A. 2000 Mar 28;97(7):3753–3758. doi: 10.1073/pnas.060023597. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Simpson Gordon G., Dean Caroline. Arabidopsis, the Rosetta stone of flowering time? Science. 2002 Apr 12;296(5566):285–289. doi: 10.1126/science.296.5566.285. [DOI] [PubMed] [Google Scholar]
  14. Telfer A., Bollman K. M., Poethig R. S. Phase change and the regulation of trichome distribution in Arabidopsis thaliana. Development. 1997 Feb;124(3):645–654. doi: 10.1242/dev.124.3.645. [DOI] [PubMed] [Google Scholar]
  15. Weigel D., Alvarez J., Smyth D. R., Yanofsky M. F., Meyerowitz E. M. LEAFY controls floral meristem identity in Arabidopsis. Cell. 1992 May 29;69(5):843–859. doi: 10.1016/0092-8674(92)90295-n. [DOI] [PubMed] [Google Scholar]
  16. Weigel D., Nilsson O. A developmental switch sufficient for flower initiation in diverse plants. Nature. 1995 Oct 12;377(6549):495–500. doi: 10.1038/377495a0. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES