Skip to main content
Genetics logoLink to Genetics
. 2003 May;164(1):311–321. doi: 10.1093/genetics/164.1.311

A bacterial artificial chromosome contig spanning the major domestication locus Q in wheat and identification of a candidate gene.

Justin D Faris 1, John P Fellers 1, Steven A Brooks 1, Bikram S Gill 1
PMCID: PMC1462558  PMID: 12750342

Abstract

The Q locus played a major role in the domestication of wheat because it confers the free-threshing character and influences many other agronomically important traits. We constructed a physical contig spanning the Q locus using a Triticum monococcum BAC library. Three chromosome walking steps were performed by complete sequencing of BACs and identification of low-copy markers through similarity searches of database sequences. The BAC contig spans a physical distance of approximately 300 kb corresponding to a genetic distance of 0.9 cM. The physical map of T. monococcum had perfect colinearity with the genetic map of wheat chromosome arm 5AL. Recombination data in conjunction with analysis of fast neutron deletions confirmed that the contig spanned the Q locus. The Q gene was narrowed to a 100-kb segment, which contains an APETALA2 (AP2)-like gene that cosegregates with Q. AP2 is known to play a major role in controlling floral homeotic gene expression and thus is an excellent candidate for Q.

Full Text

The Full Text of this article is available as a PDF (245.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997 Sep 1;25(17):3389–3402. doi: 10.1093/nar/25.17.3389. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Borts R. H., Haber J. E. Length and distribution of meiotic gene conversion tracts and crossovers in Saccharomyces cerevisiae. Genetics. 1989 Sep;123(1):69–80. doi: 10.1093/genetics/123.1.69. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bowman J. L., Smyth D. R., Meyerowitz E. M. Genes directing flower development in Arabidopsis. Plant Cell. 1989 Jan;1(1):37–52. doi: 10.1105/tpc.1.1.37. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Brooks Steven A., Huang Li, Gill Bikram S., Fellers John P. Analysis of 106 kb of contiguous DNA sequence from the D genome of wheat reveals high gene density and a complex arrangement of genes related to disease resistance. Genome. 2002 Oct;45(5):963–972. doi: 10.1139/g02-049. [DOI] [PubMed] [Google Scholar]
  5. Brueggeman R., Rostoks N., Kudrna D., Kilian A., Han F., Chen J., Druka A., Steffenson B., Kleinhofs A. The barley stem rust-resistance gene Rpg1 is a novel disease-resistance gene with homology to receptor kinases. Proc Natl Acad Sci U S A. 2002 Jun 20;99(14):9328–9333. doi: 10.1073/pnas.142284999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Büschges R., Hollricher K., Panstruga R., Simons G., Wolter M., Frijters A., van Daelen R., van der Lee T., Diergaarde P., Groenendijk J. The barley Mlo gene: a novel control element of plant pathogen resistance. Cell. 1997 Mar 7;88(5):695–705. doi: 10.1016/s0092-8674(00)81912-1. [DOI] [PubMed] [Google Scholar]
  7. Chuck G., Meeley R. B., Hake S. The control of maize spikelet meristem fate by the APETALA2-like gene indeterminate spikelet1. Genes Dev. 1998 Apr 15;12(8):1145–1154. doi: 10.1101/gad.12.8.1145. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Dooner H. K. Genetic Fine Structure of the BRONZE Locus in Maize. Genetics. 1986 Aug;113(4):1021–1036. doi: 10.1093/genetics/113.4.1021. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Drews G. N., Bowman J. L., Meyerowitz E. M. Negative regulation of the Arabidopsis homeotic gene AGAMOUS by the APETALA2 product. Cell. 1991 Jun 14;65(6):991–1002. doi: 10.1016/0092-8674(91)90551-9. [DOI] [PubMed] [Google Scholar]
  10. Dubcovsky J., Luo M., Dvorak J. Differentiation between homoeologous chromosomes 1A of wheat and 1Am of Triticum monococcum and its recognition by the wheat Ph1 locus. Proc Natl Acad Sci U S A. 1995 Jul 3;92(14):6645–6649. doi: 10.1073/pnas.92.14.6645. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Durrett Richard T., Chen Kai-Yi, Tanksley Steven D. A simple formula useful for positional cloning. Genetics. 2002 Jan;160(1):353–355. doi: 10.1093/genetics/160.1.353. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Ewing B., Green P. Base-calling of automated sequencer traces using phred. II. Error probabilities. Genome Res. 1998 Mar;8(3):186–194. [PubMed] [Google Scholar]
  13. Ewing B., Hillier L., Wendl M. C., Green P. Base-calling of automated sequencer traces using phred. I. Accuracy assessment. Genome Res. 1998 Mar;8(3):175–185. doi: 10.1101/gr.8.3.175. [DOI] [PubMed] [Google Scholar]
  14. Faris J. D., Haen K. M., Gill B. S. Saturation mapping of a gene-rich recombination hot spot region in wheat. Genetics. 2000 Feb;154(2):823–835. doi: 10.1093/genetics/154.2.823. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Faris Justin D., Gill Bikram S. Genomic targeting and high-resolution mapping of the domestication gene Q in wheat. Genome. 2002 Aug;45(4):706–718. doi: 10.1139/g02-036. [DOI] [PubMed] [Google Scholar]
  16. Feuillet C., Keller B. High gene density is conserved at syntenic loci of small and large grass genomes. Proc Natl Acad Sci U S A. 1999 Jul 6;96(14):8265–8270. doi: 10.1073/pnas.96.14.8265. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Gill K. S., Gill B. S., Endo T. R., Taylor T. Identification and high-density mapping of gene-rich regions in chromosome group 1 of wheat. Genetics. 1996 Dec;144(4):1883–1891. doi: 10.1093/genetics/144.4.1883. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Gordon D., Abajian C., Green P. Consed: a graphical tool for sequence finishing. Genome Res. 1998 Mar;8(3):195–202. doi: 10.1101/gr.8.3.195. [DOI] [PubMed] [Google Scholar]
  19. Huang Shaoxing, Sirikhachornkit Anchalee, Su Xiujuan, Faris Justin, Gill Bikram, Haselkorn Robert, Gornicki Piotr. Genes encoding plastid acetyl-CoA carboxylase and 3-phosphoglycerate kinase of the Triticum/Aegilops complex and the evolutionary history of polyploid wheat. Proc Natl Acad Sci U S A. 2002 Jun 11;99(12):8133–8138. doi: 10.1073/pnas.072223799. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Jofuku K. D., den Boer B. G., Van Montagu M., Okamuro J. K. Control of Arabidopsis flower and seed development by the homeotic gene APETALA2. Plant Cell. 1994 Sep;6(9):1211–1225. doi: 10.1105/tpc.6.9.1211. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Kojima T., Habu Y., Iida S., Ogihara Y. Direct isolation of differentially expressed genes from a specific chromosome region of common wheat: application of the amplified fragment length polymorphism-based mRNA fingerprinting (AMF) method in combination with a deletion line of wheat. Mol Gen Genet. 2000 May;263(4):635–641. doi: 10.1007/s004380051211. [DOI] [PubMed] [Google Scholar]
  22. Kunst L., Klenz J. E., Martinez-Zapater J., Haughn G. W. AP2 Gene Determines the Identity of Perianth Organs in Flowers of Arabidopsis thaliana. Plant Cell. 1989 Dec;1(12):1195–1208. doi: 10.1105/tpc.1.12.1195. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Lander E. S., Green P., Abrahamson J., Barlow A., Daly M. J., Lincoln S. E., Newberg L. A., Newburg L. MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics. 1987 Oct;1(2):174–181. doi: 10.1016/0888-7543(87)90010-3. [DOI] [PubMed] [Google Scholar]
  24. Li X., Song Y., Century K., Straight S., Ronald P., Dong X., Lassner M., Zhang Y. A fast neutron deletion mutagenesis-based reverse genetics system for plants. Plant J. 2001 Aug;27(3):235–242. doi: 10.1046/j.1365-313x.2001.01084.x. [DOI] [PubMed] [Google Scholar]
  25. Moose S. P., Sisco P. H. Glossy15, an APETALA2-like gene from maize that regulates leaf epidermal cell identity. Genes Dev. 1996 Dec 1;10(23):3018–3027. doi: 10.1101/gad.10.23.3018. [DOI] [PubMed] [Google Scholar]
  26. Muramatsu M. Dosage Effect of the Spelta Gene Q of Hexaploid Wheat. Genetics. 1963 Apr;48(4):469–482. doi: 10.1093/genetics/48.4.469. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Ogihara Y., Hasegawa K., Tsujimoto H. High-resolution cytological mapping of the long arm of chromosome 5A in common wheat using a series of deletion lines induced by gametocidal (Gc) genes of Aegilops speltoides. Mol Gen Genet. 1994 Aug 2;244(3):253–259. doi: 10.1007/BF00285452. [DOI] [PubMed] [Google Scholar]
  28. Okamuro J. K., Caster B., Villarroel R., Van Montagu M., Jofuku K. D. The AP2 domain of APETALA2 defines a large new family of DNA binding proteins in Arabidopsis. Proc Natl Acad Sci U S A. 1997 Jun 24;94(13):7076–7081. doi: 10.1073/pnas.94.13.7076. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. SEARS E. R. Misdivision of univalents in common wheat. Chromosoma. 1952;4(6):535–550. doi: 10.1007/BF00325789. [DOI] [PubMed] [Google Scholar]
  30. Sandhu D., Champoux J. A., Bondareva S. N., Gill K. S. Identification and physical localization of useful genes and markers to a major gene-rich region on wheat group 1S chromosomes. Genetics. 2001 Apr;157(4):1735–1747. doi: 10.1093/genetics/157.4.1735. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Schnable P. S., Hsia A. P., Nikolau B. J. Genetic recombination in plants. Curr Opin Plant Biol. 1998 Apr;1(2):123–129. doi: 10.1016/s1369-5266(98)80013-7. [DOI] [PubMed] [Google Scholar]
  32. Spielmeyer W., Moullet O., Laroche A., Lagudah E. S. Highly recombinogenic regions at seed storage protein loci on chromosome 1DS of Aegilops tauschii, the D-genome donor of wheat. Genetics. 2000 May;155(1):361–367. doi: 10.1093/genetics/155.1.361. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Stein N., Feuillet C., Wicker T., Schlagenhauf E., Keller B. Subgenome chromosome walking in wheat: a 450-kb physical contig in Triticum monococcum L. spans the Lr10 resistance locus in hexaploid wheat (Triticum aestivum L.). Proc Natl Acad Sci U S A. 2000 Nov 21;97(24):13436–13441. doi: 10.1073/pnas.230361597. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Timmermans M. C., Das O. P., Bradeen J. M., Messing J. Region-specific cis- and trans-acting factors contribute to genetic variability in meiotic recombination in maize. Genetics. 1997 Jul;146(3):1101–1113. doi: 10.1093/genetics/146.3.1101. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Wei F., Gobelman-Werner K., Morroll S. M., Kurth J., Mao L., Wing R., Leister D., Schulze-Lefert P., Wise R. P. The Mla (powdery mildew) resistance cluster is associated with three NBS-LRR gene families and suppressed recombination within a 240-kb DNA interval on chromosome 5S (1HS) of barley. Genetics. 1999 Dec;153(4):1929–1948. doi: 10.1093/genetics/153.4.1929. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Xu X., Hsia A. P., Zhang L., Nikolau B. J., Schnable P. S. Meiotic recombination break points resolve at high rates at the 5' end of a maize coding sequence. Plant Cell. 1995 Dec;7(12):2151–2161. doi: 10.1105/tpc.7.12.2151. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES