Skip to main content
Genetics logoLink to Genetics
. 2003 Jul;164(3):923–933. doi: 10.1093/genetics/164.3.923

The frequency gene is required for temperature-dependent regulation of many clock-controlled genes in Neurospora crassa.

Minou Nowrousian 1, Giles E Duffield 1, Jennifer J Loros 1, Jay C Dunlap 1
PMCID: PMC1462620  PMID: 12871904

Abstract

The circadian clock of Neurospora broadly regulates gene expression and is synchronized with the environment through molecular responses to changes in ambient light and temperature. It is generally understood that light entrainment of the clock depends on a functional circadian oscillator comprising the products of the wc-1 and wc-2 genes as well as those of the frq gene (the FRQ/WCC oscillator). However, various models have been advanced to explain temperature regulation. In nature, light and temperature cues reinforce one another such that transitions from dark to light and/or cold to warm set the clock to subjective morning. In some models, the FRQ/WCC circadian oscillator is seen as essential for temperature-entrained clock-controlled output; alternatively, this oscillator is seen exclusively as part of the light pathway mediating entrainment of a cryptic "driving oscillator" that mediates all temperature-entrained rhythmicity, in addition to providing the impetus for circadian oscillations in general. To identify novel clock-controlled genes and to examine these models, we have analyzed gene expression on a broad scale using cDNA microarrays. Between 2.7 and 5.9% of genes were rhythmically expressed with peak expression in the subjective morning. A total of 1.4-1.8% of genes responded consistently to temperature entrainment; all are clock controlled and all required the frq gene for this clock-regulated expression even under temperature-entrainment conditions. These data are consistent with a role for frq in the control of temperature-regulated gene expression in N. crassa and suggest that the circadian feedback loop may also serve as a sensor for small changes in ambient temperature.

Full Text

The Full Text of this article is available as a PDF (369.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akhtar Ruth A., Reddy Akhilesh B., Maywood Elizabeth S., Clayton Jonathan D., King Verdun M., Smith Andrew G., Gant Timothy W., Hastings Michael H., Kyriacou Charalambos P. Circadian cycling of the mouse liver transcriptome, as revealed by cDNA microarray, is driven by the suprachiasmatic nucleus. Curr Biol. 2002 Apr 2;12(7):540–550. doi: 10.1016/s0960-9822(02)00759-5. [DOI] [PubMed] [Google Scholar]
  2. Aronson B. D., Johnson K. A., Dunlap J. C. Circadian clock locus frequency: protein encoded by a single open reading frame defines period length and temperature compensation. Proc Natl Acad Sci U S A. 1994 Aug 2;91(16):7683–7687. doi: 10.1073/pnas.91.16.7683. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Aronson B. D., Johnson K. A., Loros J. J., Dunlap J. C. Negative feedback defining a circadian clock: autoregulation of the clock gene frequency. Science. 1994 Mar 18;263(5153):1578–1584. doi: 10.1126/science.8128244. [DOI] [PubMed] [Google Scholar]
  4. Ballario P., Vittorioso P., Magrelli A., Talora C., Cabibbo A., Macino G. White collar-1, a central regulator of blue light responses in Neurospora, is a zinc finger protein. EMBO J. 1996 Apr 1;15(7):1650–1657. [PMC free article] [PubMed] [Google Scholar]
  5. Bell-Pedersen D., Dunlap J. C., Loros J. J. Distinct cis-acting elements mediate clock, light, and developmental regulation of the Neurospora crassa eas (ccg-2) gene. Mol Cell Biol. 1996 Feb;16(2):513–521. doi: 10.1128/mcb.16.2.513. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bell-Pedersen D., Lewis Z. A., Loros J. J., Dunlap J. C. The Neurospora circadian clock regulates a transcription factor that controls rhythmic expression of the output eas(ccg-2) gene. Mol Microbiol. 2001 Aug;41(4):897–909. doi: 10.1046/j.1365-2958.2001.02558.x. [DOI] [PubMed] [Google Scholar]
  7. Bell-Pedersen D., Shinohara M. L., Loros J. J., Dunlap J. C. Circadian clock-controlled genes isolated from Neurospora crassa are late night- to early morning-specific. Proc Natl Acad Sci U S A. 1996 Nov 12;93(23):13096–13101. doi: 10.1073/pnas.93.23.13096. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Blohm D. H., Guiseppi-Elie A. New developments in microarray technology. Curr Opin Biotechnol. 2001 Feb;12(1):41–47. doi: 10.1016/s0958-1669(00)00175-0. [DOI] [PubMed] [Google Scholar]
  9. Chambergo Felipe S., Bonaccorsi Eric D., Ferreira Ari J. S., Ramos Augusto S. P., Ferreira Júnior José Ribamar, Abrahão-Neto José, Farah João P. Simon, El-Dorry Hamza. Elucidation of the metabolic fate of glucose in the filamentous fungus Trichoderma reesei using expressed sequence tag (EST) analysis and cDNA microarrays. J Biol Chem. 2002 Feb 1;277(16):13983–13988. doi: 10.1074/jbc.M107651200. [DOI] [PubMed] [Google Scholar]
  10. Cheng P., Yang Y., Liu Y. Interlocked feedback loops contribute to the robustness of the Neurospora circadian clock. Proc Natl Acad Sci U S A. 2001 Jun 19;98(13):7408–7413. doi: 10.1073/pnas.121170298. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Claridge-Chang A., Wijnen H., Naef F., Boothroyd C., Rajewsky N., Young M. W. Circadian regulation of gene expression systems in the Drosophila head. Neuron. 2001 Nov 20;32(4):657–671. doi: 10.1016/s0896-6273(01)00515-3. [DOI] [PubMed] [Google Scholar]
  12. Crosthwaite S. K., Dunlap J. C., Loros J. J. Neurospora wc-1 and wc-2: transcription, photoresponses, and the origins of circadian rhythmicity. Science. 1997 May 2;276(5313):763–769. doi: 10.1126/science.276.5313.763. [DOI] [PubMed] [Google Scholar]
  13. Crosthwaite S. K., Loros J. J., Dunlap J. C. Light-induced resetting of a circadian clock is mediated by a rapid increase in frequency transcript. Cell. 1995 Jun 30;81(7):1003–1012. doi: 10.1016/s0092-8674(05)80005-4. [DOI] [PubMed] [Google Scholar]
  14. DeRisi J. L., Iyer V. R., Brown P. O. Exploring the metabolic and genetic control of gene expression on a genomic scale. Science. 1997 Oct 24;278(5338):680–686. doi: 10.1126/science.278.5338.680. [DOI] [PubMed] [Google Scholar]
  15. Denault D. L., Loros J. J., Dunlap J. C. WC-2 mediates WC-1-FRQ interaction within the PAS protein-linked circadian feedback loop of Neurospora. EMBO J. 2001 Jan 15;20(1-2):109–117. doi: 10.1093/emboj/20.1.109. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Dragovic Zdravko, Tan Ying, Görl Margit, Roenneberg Till, Merrow Martha. Light reception and circadian behavior in 'blind' and 'clock-less' mutants of Neurospora crassa. EMBO J. 2002 Jul 15;21(14):3643–3651. doi: 10.1093/emboj/cdf377. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Duffield Giles E., Best Jonathan D., Meurers Bernhard H., Bittner Anton, Loros Jennifer J., Dunlap Jay C. Circadian programs of transcriptional activation, signaling, and protein turnover revealed by microarray analysis of mammalian cells. Curr Biol. 2002 Apr 2;12(7):551–557. doi: 10.1016/s0960-9822(02)00765-0. [DOI] [PubMed] [Google Scholar]
  18. Duggan D. J., Bittner M., Chen Y., Meltzer P., Trent J. M. Expression profiling using cDNA microarrays. Nat Genet. 1999 Jan;21(1 Suppl):10–14. doi: 10.1038/4434. [DOI] [PubMed] [Google Scholar]
  19. Dunlap J. C. Molecular bases for circadian clocks. Cell. 1999 Jan 22;96(2):271–290. doi: 10.1016/s0092-8674(00)80566-8. [DOI] [PubMed] [Google Scholar]
  20. Froehlich Allan C., Liu Yi, Loros Jennifer J., Dunlap Jay C. White Collar-1, a circadian blue light photoreceptor, binding to the frequency promoter. Science. 2002 Jul 4;297(5582):815–819. doi: 10.1126/science.1073681. [DOI] [PubMed] [Google Scholar]
  21. Grundschober C., Delaunay F., Pühlhofer A., Triqueneaux G., Laudet V., Bartfai T., Nef P. Circadian regulation of diverse gene products revealed by mRNA expression profiling of synchronized fibroblasts. J Biol Chem. 2001 Oct 11;276(50):46751–46758. doi: 10.1074/jbc.M107499200. [DOI] [PubMed] [Google Scholar]
  22. Görl M., Merrow M., Huttner B., Johnson J., Roenneberg T., Brunner M. A PEST-like element in FREQUENCY determines the length of the circadian period in Neurospora crassa. EMBO J. 2001 Dec 17;20(24):7074–7084. doi: 10.1093/emboj/20.24.7074. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Harmer S. L., Hogenesch J. B., Straume M., Chang H. S., Han B., Zhu T., Wang X., Kreps J. A., Kay S. A. Orchestrated transcription of key pathways in Arabidopsis by the circadian clock. Science. 2000 Dec 15;290(5499):2110–2113. doi: 10.1126/science.290.5499.2110. [DOI] [PubMed] [Google Scholar]
  24. He Qiyang, Cheng Ping, Yang Yuhong, Wang Lixing, Gardner Kevin H., Liu Yi. White collar-1, a DNA binding transcription factor and a light sensor. Science. 2002 Jul 4;297(5582):840–843. doi: 10.1126/science.1072795. [DOI] [PubMed] [Google Scholar]
  25. Hegde P., Qi R., Abernathy K., Gay C., Dharap S., Gaspard R., Hughes J. E., Snesrud E., Lee N., Quackenbush J. A concise guide to cDNA microarray analysis. Biotechniques. 2000 Sep;29(3):548-50, 552-4, 556 passim. doi: 10.2144/00293bi01. [DOI] [PubMed] [Google Scholar]
  26. Heintzen C., Loros J. J., Dunlap J. C. The PAS protein VIVID defines a clock-associated feedback loop that represses light input, modulates gating, and regulates clock resetting. Cell. 2001 Feb 9;104(3):453–464. doi: 10.1016/s0092-8674(01)00232-x. [DOI] [PubMed] [Google Scholar]
  27. Lakin-Thomas P. L., Brody S. Circadian rhythms in Neurospora crassa: lipid deficiencies restore robust rhythmicity to null frequency and white-collar mutants. Proc Natl Acad Sci U S A. 2000 Jan 4;97(1):256–261. doi: 10.1073/pnas.97.1.256. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Lee K., Loros J. J., Dunlap J. C. Interconnected feedback loops in the Neurospora circadian system. Science. 2000 Jul 7;289(5476):107–110. doi: 10.1126/science.289.5476.107. [DOI] [PubMed] [Google Scholar]
  29. Lewis Z. A., Correa A., Schwerdtfeger C., Link K. L., Xie X., Gomer R. H., Thomas T., Ebbole D. J., Bell-Pedersen D. Overexpression of White Collar-1 (WC-1) activates circadian clock-associated genes, but is not sufficient to induce most light-regulated gene expression in Neurospora crassa. Mol Microbiol. 2002 Aug;45(4):917–931. doi: 10.1046/j.1365-2958.2002.03074.x. [DOI] [PubMed] [Google Scholar]
  30. Linden H., Macino G. White collar 2, a partner in blue-light signal transduction, controlling expression of light-regulated genes in Neurospora crassa. EMBO J. 1997 Jan 2;16(1):98–109. doi: 10.1093/emboj/16.1.98. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Liu Y., Merrow M., Loros J. J., Dunlap J. C. How temperature changes reset a circadian oscillator. Science. 1998 Aug 7;281(5378):825–829. doi: 10.1126/science.281.5378.825. [DOI] [PubMed] [Google Scholar]
  32. Loros J. J., Denome S. A., Dunlap J. C. Molecular cloning of genes under control of the circadian clock in Neurospora. Science. 1989 Jan 20;243(4889):385–388. doi: 10.1126/science.2563175. [DOI] [PubMed] [Google Scholar]
  33. Loros J. J., Feldman J. F. Loss of temperature compensation of circadian period length in the frq-9 mutant of Neurospora crassa. J Biol Rhythms. 1986 Fall;1(3):187–198. doi: 10.1177/074873048600100302. [DOI] [PubMed] [Google Scholar]
  34. Merrow M., Brunner M., Roenneberg T. Assignment of circadian function for the Neurospora clock gene frequency. Nature. 1999 Jun 10;399(6736):584–586. doi: 10.1038/21190. [DOI] [PubMed] [Google Scholar]
  35. Merrow M., Franchi L., Dragovic Z., Görl M., Johnson J., Brunner M., Macino G., Roenneberg T. Circadian regulation of the light input pathway in Neurospora crassa. EMBO J. 2001 Feb 1;20(3):307–315. doi: 10.1093/emboj/20.3.307. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Merrow M., Roenneberg T., Macino G., Franchi L. A fungus among us: the Neurospora crassa circadian system. Semin Cell Dev Biol. 2001 Aug;12(4):279–285. doi: 10.1006/scdb.2001.0255. [DOI] [PubMed] [Google Scholar]
  37. Perou C. M., Sørlie T., Eisen M. B., van de Rijn M., Jeffrey S. S., Rees C. A., Pollack J. R., Ross D. T., Johnsen H., Akslen L. A. Molecular portraits of human breast tumours. Nature. 2000 Aug 17;406(6797):747–752. doi: 10.1038/35021093. [DOI] [PubMed] [Google Scholar]
  38. Ramsdale M., Lakin-Thomas P. L. sn-1,2-diacylglycerol levels in the fungus Neurospora crassa display circadian rhythmicity. J Biol Chem. 2000 Sep 8;275(36):27541–27550. doi: 10.1074/jbc.M002911200. [DOI] [PubMed] [Google Scholar]
  39. Schena M., Shalon D., Davis R. W., Brown P. O. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science. 1995 Oct 20;270(5235):467–470. doi: 10.1126/science.270.5235.467. [DOI] [PubMed] [Google Scholar]
  40. Talora C., Franchi L., Linden H., Ballario P., Macino G. Role of a white collar-1-white collar-2 complex in blue-light signal transduction. EMBO J. 1999 Sep 15;18(18):4961–4968. doi: 10.1093/emboj/18.18.4961. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Wilson M., DeRisi J., Kristensen H. H., Imboden P., Rane S., Brown P. O., Schoolnik G. K. Exploring drug-induced alterations in gene expression in Mycobacterium tuberculosis by microarray hybridization. Proc Natl Acad Sci U S A. 1999 Oct 26;96(22):12833–12838. doi: 10.1073/pnas.96.22.12833. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Yarden O., Plamann M., Ebbole D. J., Yanofsky C. cot-1, a gene required for hyphal elongation in Neurospora crassa, encodes a protein kinase. EMBO J. 1992 Jun;11(6):2159–2166. doi: 10.1002/j.1460-2075.1992.tb05275.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Zhu H., Nowrousian M., Kupfer D., Colot H. V., Berrocal-Tito G., Lai H., Bell-Pedersen D., Roe B. A., Loros J. J., Dunlap J. C. Analysis of expressed sequence tags from two starvation, time-of-day-specific libraries of Neurospora crassa reveals novel clock-controlled genes. Genetics. 2001 Mar;157(3):1057–1065. doi: 10.1093/genetics/157.3.1057. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES