Skip to main content
Genetics logoLink to Genetics
. 2003 Aug;164(4):1597–1606. doi: 10.1093/genetics/164.4.1597

Combining gene expression and molecular marker information for mapping complex trait genes: a simulation study.

Miguel Pérez-Enciso 1, Miguel A Toro 1, Michel Tenenhaus 1, Daniel Gianola 1
PMCID: PMC1462653  PMID: 12930763

Abstract

A method for mapping complex trait genes using cDNA microarray and molecular marker data jointly is presented and illustrated via simulation. We introduce a novel approach for simulating phenotypes and genotypes conditionally on real, publicly available, microarray data. The model assumes an underlying continuous latent variable (liability) related to some measured cDNA expression levels. Partial least-squares logistic regression is used to estimate the liability under several scenarios where the level of gene interaction, the gene effect, and the number of cDNA levels affecting liability are varied. The results suggest that: (1) the usefulness of microarray data for gene mapping increases when both the number of cDNA levels in the underlying liability and the QTL effect decrease and when genes are coexpressed; (2) the correlation between estimated and true liability is large, at least under our simulation settings; (3) it is unlikely that cDNA clones identified as significant with partial least squares (or with some other technique) are the true responsible cDNAs, especially as the number of clones in the liability increases; (4) the number of putatively significant cDNA levels increases critically if cDNAs are coexpressed in a cluster (however, the proportion of true causal cDNAs within the significant ones is similar to that in a no-coexpression scenario); and (5) data reduction is needed to smooth out the variability encountered in expression levels when these are analyzed individually.

Full Text

The Full Text of this article is available as a PDF (172.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alter O., Brown P. O., Botstein D. Singular value decomposition for genome-wide expression data processing and modeling. Proc Natl Acad Sci U S A. 2000 Aug 29;97(18):10101–10106. doi: 10.1073/pnas.97.18.10101. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Arbeitman Michelle N., Furlong Eileen E. M., Imam Farhad, Johnson Eric, Null Brian H., Baker Bruce S., Krasnow Mark A., Scott Matthew P., Davis Ronald W., White Kevin P. Gene expression during the life cycle of Drosophila melanogaster. Science. 2002 Sep 27;297(5590):2270–2275. doi: 10.1126/science.1072152. [DOI] [PubMed] [Google Scholar]
  3. Brem Rachel B., Yvert Gaël, Clinton Rebecca, Kruglyak Leonid. Genetic dissection of transcriptional regulation in budding yeast. Science. 2002 Mar 28;296(5568):752–755. doi: 10.1126/science.1069516. [DOI] [PubMed] [Google Scholar]
  4. Caron H., van Schaik B., van der Mee M., Baas F., Riggins G., van Sluis P., Hermus M. C., van Asperen R., Boon K., Voûte P. A. The human transcriptome map: clustering of highly expressed genes in chromosomal domains. Science. 2001 Feb 16;291(5507):1289–1292. doi: 10.1126/science.1056794. [DOI] [PubMed] [Google Scholar]
  5. Dumas P., Sun Y., Corbeil G., Tremblay S., Pausova Z., Kren V., Krenova D., Pravenec M., Hamet P., Tremblay J. Mapping of quantitative trait loci (QTL) of differential stress gene expression in rat recombinant inbred strains. J Hypertens. 2000 May;18(5):545–551. doi: 10.1097/00004872-200018050-00006. [DOI] [PubMed] [Google Scholar]
  6. Eaves Iain A., Wicker Linda S., Ghandour Ghassan, Lyons Paul A., Peterson Laurence B., Todd John A., Glynne Richard J. Combining mouse congenic strains and microarray gene expression analyses to study a complex trait: the NOD model of type 1 diabetes. Genome Res. 2002 Feb;12(2):232–243. [PubMed] [Google Scholar]
  7. Emahazion T., Feuk L., Jobs M., Sawyer S. L., Fredman D., St Clair D., Prince J. A., Brookes A. J. SNP association studies in Alzheimer's disease highlight problems for complex disease analysis. Trends Genet. 2001 Jul;17(7):407–413. doi: 10.1016/s0168-9525(01)02342-3. [DOI] [PubMed] [Google Scholar]
  8. Gianola Daniel, Perez-Enciso Miguel, Toro Miguel A. On marker-assisted prediction of genetic value: beyond the ridge. Genetics. 2003 Jan;163(1):347–365. doi: 10.1093/genetics/163.1.347. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Gruvberger S., Ringnér M., Chen Y., Panavally S., Saal L. H., Borg A, Fernö M., Peterson C., Meltzer P. S. Estrogen receptor status in breast cancer is associated with remarkably distinct gene expression patterns. Cancer Res. 2001 Aug 15;61(16):5979–5984. [PubMed] [Google Scholar]
  10. Holter N. S., Maritan A., Cieplak M., Fedoroff N. V., Banavar J. R. Dynamic modeling of gene expression data. Proc Natl Acad Sci U S A. 2001 Feb 13;98(4):1693–1698. doi: 10.1073/pnas.98.4.1693. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Holter N. S., Mitra M., Maritan A., Cieplak M., Banavar J. R., Fedoroff N. V. Fundamental patterns underlying gene expression profiles: simplicity from complexity. Proc Natl Acad Sci U S A. 2000 Jul 18;97(15):8409–8414. doi: 10.1073/pnas.150242097. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Jansen R. C., Nap J. P. Genetical genomics: the added value from segregation. Trends Genet. 2001 Jul;17(7):388–391. doi: 10.1016/s0168-9525(01)02310-1. [DOI] [PubMed] [Google Scholar]
  13. Khan J., Wei J. S., Ringnér M., Saal L. H., Ladanyi M., Westermann F., Berthold F., Schwab M., Antonescu C. R., Peterson C. Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks. Nat Med. 2001 Jun;7(6):673–679. doi: 10.1038/89044. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. McPeek M. S., Strahs A. Assessment of linkage disequilibrium by the decay of haplotype sharing, with application to fine-scale genetic mapping. Am J Hum Genet. 1999 Sep;65(3):858–875. doi: 10.1086/302537. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Nguyen Danh V., Arpat A. Bulak, Wang Naisyin, Carroll Raymond J. DNA microarray experiments: biological and technological aspects. Biometrics. 2002 Dec;58(4):701–717. doi: 10.1111/j.0006-341x.2002.00701.x. [DOI] [PubMed] [Google Scholar]
  16. Nordborg Magnus, Tavaré Simon. Linkage disequilibrium: what history has to tell us. Trends Genet. 2002 Feb;18(2):83–90. doi: 10.1016/s0168-9525(02)02557-x. [DOI] [PubMed] [Google Scholar]
  17. Pérez-Enciso Miguel, Tenenhaus Michel. Prediction of clinical outcome with microarray data: a partial least squares discriminant analysis (PLS-DA) approach. Hum Genet. 2003 Feb 27;112(5-6):581–592. doi: 10.1007/s00439-003-0921-9. [DOI] [PubMed] [Google Scholar]
  18. Schadt Eric E., Monks Stephanie A., Drake Thomas A., Lusis Aldons J., Che Nam, Colinayo Veronica, Ruff Thomas G., Milligan Stephen B., Lamb John R., Cavet Guy. Genetics of gene expression surveyed in maize, mouse and man. Nature. 2003 Mar 20;422(6929):297–302. doi: 10.1038/nature01434. [DOI] [PubMed] [Google Scholar]
  19. Suh Eun-Young, Schafer Daniel W. Semiparametric maximum likelihood for nonlinear regression with measurement errors. Biometrics. 2002 Jun;58(2):448–453. doi: 10.1111/j.0006-341x.2002.00448.x. [DOI] [PubMed] [Google Scholar]
  20. Sørlie T., Perou C. M., Tibshirani R., Aas T., Geisler S., Johnsen H., Hastie T., Eisen M. B., van de Rijn M., Jeffrey S. S. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci U S A. 2001 Sep 11;98(19):10869–10874. doi: 10.1073/pnas.191367098. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. West M., Blanchette C., Dressman H., Huang E., Ishida S., Spang R., Zuzan H., Olson J. A., Jr, Marks J. R., Nevins J. R. Predicting the clinical status of human breast cancer by using gene expression profiles. Proc Natl Acad Sci U S A. 2001 Sep 18;98(20):11462–11467. doi: 10.1073/pnas.201162998. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES