Skip to main content
Genetics logoLink to Genetics
. 2003 Oct;165(2):575–588. doi: 10.1093/genetics/165.2.575

The evolutionary duplication and probable demise of an endodermal GATA factor in Caenorhabditis elegans.

Tetsunari Fukushige 1, Barbara Goszczynski 1, Helen Tian 1, James D McGhee 1
PMCID: PMC1462794  PMID: 14573471

Abstract

We describe the elt-4 gene from the nematode Caenorhabditis elegans. elt-4 is predicted to encode a very small (72 residues, 8.1 kD) GATA-type zinc finger transcription factor. The elt-4 gene is located approximately 5 kb upstream of the C. elegans elt-2 gene, which also encodes a GATA-type transcription factor; the zinc finger DNA-binding domains are highly conserved (24/25 residues) between the two proteins. The elt-2 gene is expressed only in the intestine and is essential for normal intestinal development. This article explores whether elt-4 also has a role in intestinal development. Reporter fusions to the elt-4 promoter or reporter insertions into the elt-4 coding regions show that elt-4 is indeed expressed in the intestine, beginning at the 1.5-fold stage of embryogenesis and continuing into adulthood. elt-4 reporter fusions are also expressed in nine cells of the posterior pharynx. Ectopic expression of elt-4 cDNA within the embryo does not cause detectable ectopic expression of biochemical markers of gut differentiation; furthermore, ectopic elt-4 expression neither inhibits nor enhances the ectopic marker expression caused by ectopic elt-2 expression. A deletion allele of elt-4 was isolated but no obvious phenotype could be detected, either in the gut or elsewhere; brood sizes, hatching efficiencies, and growth rates were indistinguishable from wild type. We found no evidence that elt-4 provided backup functions for elt-2. We used microarray analysis to search for genes that might be differentially expressed between L1 larvae of the elt-4 deletion strain and wild-type worms. Paired hybridizations were repeated seven times, allowing us to conclude, with some confidence, that no candidate target transcript could be identified as significantly up- or downregulated by loss of elt-4 function. In vitro binding experiments could not detect specific binding of ELT-4 protein to candidate binding sites (double-stranded oligonucleotides containing single or multiple WGATAR sequences); ELT-4 protein neither enhanced nor inhibited the strong sequence-specific binding of the ELT-2 protein. Whereas ELT-2 protein is a strong transcriptional activator in yeast, ELT-4 protein has no such activity under similar conditions, nor does it influence the transcriptional activity of coexpressed ELT-2 protein. Although an elt-2 homolog was easily identified in the genomic sequence of the related nematode C. briggsae, no elt-4 homolog could be identified. Analysis of the changes in silent third codon positions within the DNA-binding domains indicates that elt-4 arose as a duplication of elt-2, some 25-55 MYA. Thus, elt-4 has survived far longer than the average duplicated gene in C. elegans, even though no obvious biological function could be detected. elt-4 provides an interesting example of a tandemly duplicated gene that may originally have been the same size as elt-2 but has gradually been whittled down to its present size of little more than a zinc finger. Although elt-4 must confer (or must have conferred) some selective advantage to C. elegans, we suggest that its ultimate evolutionary fate will be disappearance from the C. elegans genome.

Full Text

The Full Text of this article is available as a PDF (422.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Albertson D. G., Thomson J. N. The pharynx of Caenorhabditis elegans. Philos Trans R Soc Lond B Biol Sci. 1976 Aug 10;275(938):299–325. doi: 10.1098/rstb.1976.0085. [DOI] [PubMed] [Google Scholar]
  2. Averof Michalis. Arthropod Hox genes: insights on the evolutionary forces that shape gene functions. Curr Opin Genet Dev. 2002 Aug;12(4):386–392. doi: 10.1016/s0959-437x(02)00314-3. [DOI] [PubMed] [Google Scholar]
  3. Blumenthal Thomas, Evans Donald, Link Christopher D., Guffanti Alessandro, Lawson Daniel, Thierry-Mieg Jean, Thierry-Mieg Danielle, Chiu Wei Lu, Duke Kyle, Kiraly Moni. A global analysis of Caenorhabditis elegans operons. Nature. 2002 Jun 20;417(6891):851–854. doi: 10.1038/nature00831. [DOI] [PubMed] [Google Scholar]
  4. Bonner J. J. Vectors for the expression and analysis of DNA-binding proteins in yeast. Gene. 1991 Jul 31;104(1):113–118. doi: 10.1016/0378-1119(91)90475-q. [DOI] [PubMed] [Google Scholar]
  5. Coghlan Avril, Wolfe Kenneth H. Fourfold faster rate of genome rearrangement in nematodes than in Drosophila. Genome Res. 2002 Jun;12(6):857–867. doi: 10.1101/gr.172702. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Edgar L. G., McGhee J. D. Embryonic expression of a gut-specific esterase in Caenorhabditis elegans. Dev Biol. 1986 Mar;114(1):109–118. doi: 10.1016/0012-1606(86)90387-8. [DOI] [PubMed] [Google Scholar]
  7. Egan C. R., Chung M. A., Allen F. L., Heschl M. F., Van Buskirk C. L., McGhee J. D. A gut-to-pharynx/tail switch in embryonic expression of the Caenorhabditis elegans ges-1 gene centers on two GATA sequences. Dev Biol. 1995 Aug;170(2):397–419. doi: 10.1006/dbio.1995.1225. [DOI] [PubMed] [Google Scholar]
  8. Fire A. RNA-triggered gene silencing. Trends Genet. 1999 Sep;15(9):358–363. doi: 10.1016/s0168-9525(99)01818-1. [DOI] [PubMed] [Google Scholar]
  9. Force A., Lynch M., Pickett F. B., Amores A., Yan Y. L., Postlethwait J. Preservation of duplicate genes by complementary, degenerative mutations. Genetics. 1999 Apr;151(4):1531–1545. doi: 10.1093/genetics/151.4.1531. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Fukushige T., Schroeder D. F., Allen F. L., Goszczynski B., McGhee J. D. Modulation of gene expression in the embryonic digestive tract of C. elegans. Dev Biol. 1996 Sep 15;178(2):276–288. doi: 10.1006/dbio.1996.0218. [DOI] [PubMed] [Google Scholar]
  11. Geiser M., Cèbe R., Drewello D., Schmitz R. Integration of PCR fragments at any specific site within cloning vectors without the use of restriction enzymes and DNA ligase. Biotechniques. 2001 Jul;31(1):88-90, 92. doi: 10.2144/01311st05. [DOI] [PubMed] [Google Scholar]
  12. Hawkins M. G., McGhee J. D. elt-2, a second GATA factor from the nematode Caenorhabditis elegans. J Biol Chem. 1995 Jun 16;270(24):14666–14671. doi: 10.1074/jbc.270.24.14666. [DOI] [PubMed] [Google Scholar]
  13. Kalb J. M., Lau K. K., Goszczynski B., Fukushige T., Moons D., Okkema P. G., McGhee J. D. pha-4 is Ce-fkh-1, a fork head/HNF-3alpha,beta,gamma homolog that functions in organogenesis of the C. elegans pharynx. Development. 1998 Jun;125(12):2171–2180. doi: 10.1242/dev.125.12.2171. [DOI] [PubMed] [Google Scholar]
  14. Kalb John M., Beaster-Jones Laura, Fernandez Anthony P., Okkema Peter G., Goszczynski Barbara, McGhee James D. Interference between the PHA-4 and PEB-1 transcription factors in formation of the Caenorhabditis elegans pharynx. J Mol Biol. 2002 Jul 19;320(4):697–704. doi: 10.1016/s0022-2836(02)00555-7. [DOI] [PubMed] [Google Scholar]
  15. Kennedy B. P., Aamodt E. J., Allen F. L., Chung M. A., Heschl M. F., McGhee J. D. The gut esterase gene (ges-1) from the nematodes Caenorhabditis elegans and Caenorhabditis briggsae. J Mol Biol. 1993 Feb 20;229(4):890–908. doi: 10.1006/jmbi.1993.1094. [DOI] [PubMed] [Google Scholar]
  16. Kim S. K., Lund J., Kiraly M., Duke K., Jiang M., Stuart J. M., Eizinger A., Wylie B. N., Davidson G. S. A gene expression map for Caenorhabditis elegans. Science. 2001 Sep 14;293(5537):2087–2092. doi: 10.1126/science.1061603. [DOI] [PubMed] [Google Scholar]
  17. Krause M., Hirsh D. A trans-spliced leader sequence on actin mRNA in C. elegans. Cell. 1987 Jun 19;49(6):753–761. doi: 10.1016/0092-8674(87)90613-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Lowry J. A., Atchley W. R. Molecular evolution of the GATA family of transcription factors: conservation within the DNA-binding domain. J Mol Evol. 2000 Feb;50(2):103–115. doi: 10.1007/s002399910012. [DOI] [PubMed] [Google Scholar]
  19. Lynch M., Conery J. S. The evolutionary fate and consequences of duplicate genes. Science. 2000 Nov 10;290(5494):1151–1155. doi: 10.1126/science.290.5494.1151. [DOI] [PubMed] [Google Scholar]
  20. Maduro M. F., Meneghini M. D., Bowerman B., Broitman-Maduro G., Rothman J. H. Restriction of mesendoderm to a single blastomere by the combined action of SKN-1 and a GSK-3beta homolog is mediated by MED-1 and -2 in C. elegans. Mol Cell. 2001 Mar;7(3):475–485. doi: 10.1016/s1097-2765(01)00195-2. [DOI] [PubMed] [Google Scholar]
  21. Maduro Morris F., Rothman Joel H. Making worm guts: the gene regulatory network of the Caenorhabditis elegans endoderm. Dev Biol. 2002 Jun 1;246(1):68–85. doi: 10.1006/dbio.2002.0655. [DOI] [PubMed] [Google Scholar]
  22. Marshall S. D., McGhee J. D. Coordination of ges-1 expression between the Caenorhabditis pharynx and intestine. Dev Biol. 2001 Nov 15;239(2):350–363. doi: 10.1006/dbio.2001.0442. [DOI] [PubMed] [Google Scholar]
  23. McGhee J. D., Birchall J. C., Chung M. A., Cottrell D. A., Edgar L. G., Svendsen P. C., Ferrari D. C. Production of null mutants in the major intestinal esterase gene (ges-1) of the nematode Caenorhabditis elegans. Genetics. 1990 Jul;125(3):505–514. doi: 10.1093/genetics/125.3.505. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Montgomery M. K., Xu S., Fire A. RNA as a target of double-stranded RNA-mediated genetic interference in Caenorhabditis elegans. Proc Natl Acad Sci U S A. 1998 Dec 22;95(26):15502–15507. doi: 10.1073/pnas.95.26.15502. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Nadon Robert, Shoemaker Jennifer. Statistical issues with microarrays: processing and analysis. Trends Genet. 2002 May;18(5):265–271. doi: 10.1016/s0168-9525(02)02665-3. [DOI] [PubMed] [Google Scholar]
  26. Nowak M. A., Boerlijst M. C., Cooke J., Smith J. M. Evolution of genetic redundancy. Nature. 1997 Jul 10;388(6638):167–171. doi: 10.1038/40618. [DOI] [PubMed] [Google Scholar]
  27. Omichinski J. G., Clore G. M., Schaad O., Felsenfeld G., Trainor C., Appella E., Stahl S. J., Gronenborn A. M. NMR structure of a specific DNA complex of Zn-containing DNA binding domain of GATA-1. Science. 1993 Jul 23;261(5120):438–446. doi: 10.1126/science.8332909. [DOI] [PubMed] [Google Scholar]
  28. Omichinski J. G., Trainor C., Evans T., Gronenborn A. M., Clore G. M., Felsenfeld G. A small single-"finger" peptide from the erythroid transcription factor GATA-1 binds specifically to DNA as a zinc or iron complex. Proc Natl Acad Sci U S A. 1993 Mar 1;90(5):1676–1680. doi: 10.1073/pnas.90.5.1676. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Patient Roger K., McGhee James D. The GATA family (vertebrates and invertebrates). Curr Opin Genet Dev. 2002 Aug;12(4):416–422. doi: 10.1016/s0959-437x(02)00319-2. [DOI] [PubMed] [Google Scholar]
  30. Rehorn K. P., Thelen H., Michelson A. M., Reuter R. A molecular aspect of hematopoiesis and endoderm development common to vertebrates and Drosophila. Development. 1996 Dec;122(12):4023–4031. doi: 10.1242/dev.122.12.4023. [DOI] [PubMed] [Google Scholar]
  31. Reuter R. The gene serpent has homeotic properties and specifies endoderm versus ectoderm within the Drosophila gut. Development. 1994 May;120(5):1123–1135. doi: 10.1242/dev.120.5.1123. [DOI] [PubMed] [Google Scholar]
  32. Semple C., Wolfe K. H. Gene duplication and gene conversion in the Caenorhabditis elegans genome. J Mol Evol. 1999 May;48(5):555–564. doi: 10.1007/pl00006498. [DOI] [PubMed] [Google Scholar]
  33. Shim Y. H., Bonner J. J., Blumenthal T. Activity of a C. elegans GATA transcription factor, ELT-1, expressed in yeast. J Mol Biol. 1995 Nov 10;253(5):665–676. doi: 10.1006/jmbi.1995.0581. [DOI] [PubMed] [Google Scholar]
  34. Starich M. R., Wikström M., Arst H. N., Jr, Clore G. M., Gronenborn A. M. The solution structure of a fungal AREA protein-DNA complex: an alternative binding mode for the basic carboxyl tail of GATA factors. J Mol Biol. 1998 Apr 3;277(3):605–620. doi: 10.1006/jmbi.1998.1625. [DOI] [PubMed] [Google Scholar]
  35. Starich M. R., Wikström M., Schumacher S., Arst H. N., Jr, Gronenborn A. M., Clore G. M. The solution structure of the Leu22-->Val mutant AREA DNA binding domain complexed with a TGATAG core element defines a role for hydrophobic packing in the determination of specificity. J Mol Biol. 1998 Apr 3;277(3):621–634. doi: 10.1006/jmbi.1997.1626. [DOI] [PubMed] [Google Scholar]
  36. Stein L., Sternberg P., Durbin R., Thierry-Mieg J., Spieth J. WormBase: network access to the genome and biology of Caenorhabditis elegans. Nucleic Acids Res. 2001 Jan 1;29(1):82–86. doi: 10.1093/nar/29.1.82. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Tsang W. Y., Sayles L. C., Grad L. I., Pilgrim D. B., Lemire B. D. Mitochondrial respiratory chain deficiency in Caenorhabditis elegans results in developmental arrest and increased life span. J Biol Chem. 2001 Jun 15;276(34):32240–32246. doi: 10.1074/jbc.M103999200. [DOI] [PubMed] [Google Scholar]
  38. Tusher V. G., Tibshirani R., Chu G. Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci U S A. 2001 Apr 17;98(9):5116–5121. doi: 10.1073/pnas.091062498. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Waltzer Lucas, Bataillé Laetitia, Peyrefitte Sandrine, Haenlin Marc. Two isoforms of Serpent containing either one or two GATA zinc fingers have different roles in Drosophila haematopoiesis. EMBO J. 2002 Oct 15;21(20):5477–5486. doi: 10.1093/emboj/cdf545. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Zhu J., Fukushige T., McGhee J. D., Rothman J. H. Reprogramming of early embryonic blastomeres into endodermal progenitors by a Caenorhabditis elegans GATA factor. Genes Dev. 1998 Dec 15;12(24):3809–3814. doi: 10.1101/gad.12.24.3809. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Zhu J., Hill R. J., Heid P. J., Fukuyama M., Sugimoto A., Priess J. R., Rothman J. H. end-1 encodes an apparent GATA factor that specifies the endoderm precursor in Caenorhabditis elegans embryos. Genes Dev. 1997 Nov 1;11(21):2883–2896. doi: 10.1101/gad.11.21.2883. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES