Skip to main content
Genetics logoLink to Genetics
. 2003 Nov;165(3):1255–1268. doi: 10.1093/genetics/165.3.1255

Drosophila calmodulin mutants with specific defects in the musculature or in the nervous system.

Bo Wang 1, Kathleen M C Sullivan 1, Kathy Beckingham 1
PMCID: PMC1462851  PMID: 14668380

Abstract

We have studied lethal mutations in the single calmodulin gene (Cam) of Drosophila to gain insight into the in vivo functions of this important calcium sensor. As a result of maternal calmodulin (CaM) in the mature egg, lethality is delayed until the postembryonic stages. Prior to death in the first larval instar, Cam nulls show a striking behavioral abnormality (spontaneous backward movement) whereas a mutation, Cam7, that results in a single amino acid change (V91G) produces a very different phenotype: short indented pupal cases and pupal death with head eversion defects. We show here that the null behavioral phenotype originates in the nervous system and involves a CaM function that requires calcium binding to all four sites of the protein. Further, backward movement can be induced in hypomorphic mutants by exposure to high light levels. In contrast, the V91G mutation specifically affects the musculature and causes abnormal calcium release in response to depolarization of the muscles. Genetic interaction studies suggest that failed regulation of the muscle calcium release channel, the ryanodine receptor, is the major defect underlying the Cam7 phenotype.

Full Text

The Full Text of this article is available as a PDF (503.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brand A. H., Perrimon N. Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development. 1993 Jun;118(2):401–415. doi: 10.1242/dev.118.2.401. [DOI] [PubMed] [Google Scholar]
  2. Brand A. GFP in Drosophila. Trends Genet. 1995 Aug;11(8):324–325. doi: 10.1016/s0168-9525(00)89091-5. [DOI] [PubMed] [Google Scholar]
  3. Busto M., Iyengar B., Campos A. R. Genetic dissection of behavior: modulation of locomotion by light in the Drosophila melanogaster larva requires genetically distinct visual system functions. J Neurosci. 1999 May 1;19(9):3337–3344. doi: 10.1523/JNEUROSCI.19-09-03337.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Catterall W. A. Structure and regulation of voltage-gated Ca2+ channels. Annu Rev Cell Dev Biol. 2000;16:521–555. doi: 10.1146/annurev.cellbio.16.1.521. [DOI] [PubMed] [Google Scholar]
  5. Cyert M. S. Genetic analysis of calmodulin and its targets in Saccharomyces cerevisiae. Annu Rev Genet. 2001;35:647–672. doi: 10.1146/annurev.genet.35.102401.091302. [DOI] [PubMed] [Google Scholar]
  6. Doyle K. E., Kovalick G. E., Lee E., Beckingham K. Drosophila melanogaster contains a single calmodulin gene. Further structure and expression studies. J Mol Biol. 1990 Jun 20;213(4):599–605. doi: 10.1016/S0022-2836(05)80245-1. [DOI] [PubMed] [Google Scholar]
  7. Eberl D. F., Ren D., Feng G., Lorenz L. J., Van Vactor D., Hall L. M. Genetic and developmental characterization of Dmca1D, a calcium channel alpha1 subunit gene in Drosophila melanogaster. Genetics. 1998 Mar;148(3):1159–1169. doi: 10.1093/genetics/148.3.1159. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Fletcher J. C., Burtis K. C., Hogness D. S., Thummel C. S. The Drosophila E74 gene is required for metamorphosis and plays a role in the polytene chromosome puffing response to ecdysone. Development. 1995 May;121(5):1455–1465. doi: 10.1242/dev.121.5.1455. [DOI] [PubMed] [Google Scholar]
  9. Geiser J. R., van Tuinen D., Brockerhoff S. E., Neff M. M., Davis T. N. Can calmodulin function without binding calcium? Cell. 1991 Jun 14;65(6):949–959. doi: 10.1016/0092-8674(91)90547-c. [DOI] [PubMed] [Google Scholar]
  10. HODGKIN A. L., HOROWICZ P. Potassium contractures in single muscle fibres. J Physiol. 1960 Sep;153:386–403. doi: 10.1113/jphysiol.1960.sp006541. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Harvie P. D., Filippova M., Bryant P. J. Genes expressed in the ring gland, the major endocrine organ of Drosophila melanogaster. Genetics. 1998 May;149(1):217–231. doi: 10.1093/genetics/149.1.217. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Heiman R. G., Atkinson R. C., Andruss B. F., Bolduc C., Kovalick G. E., Beckingham K. Spontaneous avoidance behavior in Drosophila null for calmodulin expression. Proc Natl Acad Sci U S A. 1996 Mar 19;93(6):2420–2425. doi: 10.1073/pnas.93.6.2420. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hewes R. S., Schaefer A. M., Taghert P. H. The cryptocephal gene (ATF4) encodes multiple basic-leucine zipper proteins controlling molting and metamorphosis in Drosophila. Genetics. 2000 Aug;155(4):1711–1723. doi: 10.1093/genetics/155.4.1711. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Jenden D. J., Fairhurst A. S. The pharmacology of ryanodine. Pharmacol Rev. 1969 Mar;21(1):1–25. [PubMed] [Google Scholar]
  15. Kink J. A., Maley M. E., Preston R. R., Ling K. Y., Wallen-Friedman M. A., Saimi Y., Kung C. Mutations in paramecium calmodulin indicate functional differences between the C-terminal and N-terminal lobes in vivo. Cell. 1990 Jul 13;62(1):165–174. doi: 10.1016/0092-8674(90)90250-i. [DOI] [PubMed] [Google Scholar]
  16. Kovalick G. E., Beckingham K. Calmodulin transcription is limited to the nervous system during Drosophila embryogenesis. Dev Biol. 1992 Mar;150(1):33–46. doi: 10.1016/0012-1606(92)90005-2. [DOI] [PubMed] [Google Scholar]
  17. Lai F. A., Misra M., Xu L., Smith H. A., Meissner G. The ryanodine receptor-Ca2+ release channel complex of skeletal muscle sarcoplasmic reticulum. Evidence for a cooperatively coupled, negatively charged homotetramer. J Biol Chem. 1989 Oct 5;264(28):16776–16785. [PubMed] [Google Scholar]
  18. Ling K. Y., Maley M. E., Preston R. R., Saimi Y., Kung C. New non-lethal calmodulin mutations in Paramecium. A structural and functional bipartition hypothesis. Eur J Biochem. 1994 Jun 1;222(2):433–439. doi: 10.1111/j.1432-1033.1994.tb18882.x. [DOI] [PubMed] [Google Scholar]
  19. Lynch P. J., Tong J., Lehane M., Mallet A., Giblin L., Heffron J. J., Vaughan P., Zafra G., MacLennan D. H., McCarthy T. V. A mutation in the transmembrane/luminal domain of the ryanodine receptor is associated with abnormal Ca2+ release channel function and severe central core disease. Proc Natl Acad Sci U S A. 1999 Mar 30;96(7):4164–4169. doi: 10.1073/pnas.96.7.4164. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Mlodzik M., Baker N. E., Rubin G. M. Isolation and expression of scabrous, a gene regulating neurogenesis in Drosophila. Genes Dev. 1990 Nov;4(11):1848–1861. doi: 10.1101/gad.4.11.1848. [DOI] [PubMed] [Google Scholar]
  21. Nelson H. B., Heiman R. G., Bolduc C., Kovalick G. E., Whitley P., Stern M., Beckingham K. Calmodulin point mutations affect Drosophila development and behavior. Genetics. 1997 Dec;147(4):1783–1798. doi: 10.1093/genetics/147.4.1783. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Ohya Y., Botstein D. Diverse essential functions revealed by complementing yeast calmodulin mutants. Science. 1994 Feb 18;263(5149):963–966. doi: 10.1126/science.8310294. [DOI] [PubMed] [Google Scholar]
  23. Ren D., Xu H., Eberl D. F., Chopra M., Hall L. M. A mutation affecting dihydropyridine-sensitive current levels and activation kinetics in Drosophila muscle and mammalian heart calcium channels. J Neurosci. 1998 Apr 1;18(7):2335–2341. doi: 10.1523/JNEUROSCI.18-07-02335.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Rodney G. G., Moore C. P., Williams B. Y., Zhang J. Z., Krol J., Pedersen S. E., Hamilton S. L. Calcium binding to calmodulin leads to an N-terminal shift in its binding site on the ryanodine Receptor. J Biol Chem. 2000 Oct 16;276(3):2069–2074. doi: 10.1074/jbc.M008891200. [DOI] [PubMed] [Google Scholar]
  25. Rosay P., Davies S. A., Yu Y., Sözen M. A., Kaiser K., Dow J. A. Cell-type specific calcium signalling in a Drosophila epithelium. J Cell Sci. 1997 Aug;110(Pt 15):1683–1692. doi: 10.1242/jcs.110.15.1683. [DOI] [PubMed] [Google Scholar]
  26. Saimi Yoshiro, Kung Ching. Calmodulin as an ion channel subunit. Annu Rev Physiol. 2002;64:289–311. doi: 10.1146/annurev.physiol.64.100301.111649. [DOI] [PubMed] [Google Scholar]
  27. Scott K., Sun Y., Beckingham K., Zuker C. S. Calmodulin regulation of Drosophila light-activated channels and receptor function mediates termination of the light response in vivo. Cell. 1997 Oct 31;91(3):375–383. doi: 10.1016/s0092-8674(00)80421-3. [DOI] [PubMed] [Google Scholar]
  28. Shi X., Chen M., Huvos P. E., Hardwicke P. M. Amino acid sequence of a Ca(2+)-transporting ATPase from the sarcoplasmic reticulum of the cross-striated part of the adductor muscle of the deep sea scallop: comparison to serca enzymes of other animals. Comp Biochem Physiol B Biochem Mol Biol. 1998 Jun;120(2):359–374. doi: 10.1016/s0305-0491(98)10025-1. [DOI] [PubMed] [Google Scholar]
  29. Stewart B. A., Atwood H. L., Renger J. J., Wang J., Wu C. F. Improved stability of Drosophila larval neuromuscular preparations in haemolymph-like physiological solutions. J Comp Physiol A. 1994 Aug;175(2):179–191. doi: 10.1007/BF00215114. [DOI] [PubMed] [Google Scholar]
  30. Sullivan K. M., Scott K., Zuker C. S., Rubin G. M. The ryanodine receptor is essential for larval development in Drosophila melanogaster. Proc Natl Acad Sci U S A. 2000 May 23;97(11):5942–5947. doi: 10.1073/pnas.110145997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Takeshima H., Nishi M., Iwabe N., Miyata T., Hosoya T., Masai I., Hotta Y. Isolation and characterization of a gene for a ryanodine receptor/calcium release channel in Drosophila melanogaster. FEBS Lett. 1994 Jan 3;337(1):81–87. doi: 10.1016/0014-5793(94)80634-9. [DOI] [PubMed] [Google Scholar]
  32. Taylor S. R., Lopez J. R., Griffiths P. J., Trube G., Cecchi G. Calcium in excitation--contraction coupling of frog skeletal muscle. Can J Physiol Pharmacol. 1982 Apr;60(4):489–502. doi: 10.1139/y82-068. [DOI] [PubMed] [Google Scholar]
  33. Toyofuku T., Curotto Kurzydlowski K., Narayanan N., MacLennan D. H. Identification of Ser38 as the site in cardiac sarcoplasmic reticulum Ca(2+)-ATPase that is phosphorylated by Ca2+/calmodulin-dependent protein kinase. J Biol Chem. 1994 Oct 21;269(42):26492–26496. [PubMed] [Google Scholar]
  34. Wang Bo, Bolduc Clare, Beckingham Kathy. Calmodulin UAS-constructs and the in vivo roles of calmodulin: analysis of a muscle-specific phenotype. Genesis. 2002 Sep-Oct;34(1-2):86–90. doi: 10.1002/gene.10141. [DOI] [PubMed] [Google Scholar]
  35. Yao K. M., White K. Neural specificity of elav expression: defining a Drosophila promoter for directing expression to the nervous system. J Neurochem. 1994 Jul;63(1):41–51. doi: 10.1046/j.1471-4159.1994.63010041.x. [DOI] [PubMed] [Google Scholar]
  36. Zheng W., Feng G., Ren D., Eberl D. F., Hannan F., Dubald M., Hall L. M. Cloning and characterization of a calcium channel alpha 1 subunit from Drosophila melanogaster with similarity to the rat brain type D isoform. J Neurosci. 1995 Feb;15(2):1132–1143. doi: 10.1523/JNEUROSCI.15-02-01132.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. van Houten J., Chang S. Y., Kung C. Genetic analyses of "paranoiac" mutants of Paramecium tetraurelia. Genetics. 1977 May;86(1):113–120. doi: 10.1093/genetics/86.1.113. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES