Skip to main content
Genetics logoLink to Genetics
. 2003 Nov;165(3):1279–1288. doi: 10.1093/genetics/165.3.1279

Patterns of nucleotide polymorphism and divergence in the odorant-binding protein genes OS-E and OS-F: analysis in the melanogaster species subgroup of Drosophila.

Alejandro Sánchez-Gracia 1, Montserrat Aguadé 1, Julio Rozas 1
PMCID: PMC1462860  PMID: 14668382

Abstract

The Olfactory Specific-E and -F genes (OS-E and OS-F) belong to the odorant-binding protein gene family, which includes the general odorant-binding proteins and the pheromone-binding proteins. In Drosophila melanogaster, these genes are arranged in tandem in a genomic region near the centromere of chromosome arm 3R. We examined the pattern of DNA sequence variation in an approximately 7-kb genomic region encompassing the two OS genes in four species of the melanogaster subgroup of Drosophila and in a population sample of D. melanogaster. We found that both the OS-E and the OS-F gene are present in all surveyed species. Nucleotide divergence estimates would support that the two genes are functional, although they diverge in their functional constraint. The pattern of nucleotide variation in D. melanogaster also differed between genes. Variation in the OS-E gene region exhibited an unusual and distinctive pattern: (i) a relatively high number of fixed amino acid replacements in the encoded protein and (ii) a peak of nucleotide polymorphism around the OS-E gene. These results are unlikely under the neutral model and suggest the action of natural selection in the evolution of the two odorant-binding protein genes.

Full Text

The Full Text of this article is available as a PDF (282.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andolfatto P., Przeworski M. A genome-wide departure from the standard neutral model in natural populations of Drosophila. Genetics. 2000 Sep;156(1):257–268. doi: 10.1093/genetics/156.1.257. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Begun D. J., Aquadro C. F. Levels of naturally occurring DNA polymorphism correlate with recombination rates in D. melanogaster. Nature. 1992 Apr 9;356(6369):519–520. doi: 10.1038/356519a0. [DOI] [PubMed] [Google Scholar]
  3. Bingham P. M., Levis R., Rubin G. M. Cloning of DNA sequences from the white locus of D. melanogaster by a novel and general method. Cell. 1981 Sep;25(3):693–704. doi: 10.1016/0092-8674(81)90176-8. [DOI] [PubMed] [Google Scholar]
  4. Buck L., Axel R. A novel multigene family may encode odorant receptors: a molecular basis for odor recognition. Cell. 1991 Apr 5;65(1):175–187. doi: 10.1016/0092-8674(91)90418-x. [DOI] [PubMed] [Google Scholar]
  5. Campanacci V., Longhi S., Nagnan-Le Meillour P., Cambillau C., Tegoni M. Recombinant pheromone binding protein 1 from Mamestra brassicae (MbraPBP1). Functional and structural characterization. Eur J Biochem. 1999 Sep;264(3):707–716. doi: 10.1046/j.1432-1327.1999.00666.x. [DOI] [PubMed] [Google Scholar]
  6. Charlesworth B., Morgan M. T., Charlesworth D. The effect of deleterious mutations on neutral molecular variation. Genetics. 1993 Aug;134(4):1289–1303. doi: 10.1093/genetics/134.4.1289. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cirera S., Aguadé M. Evolutionary history of the sex-peptide (Acp70A) gene region in Drosophila melanogaster. Genetics. 1997 Sep;147(1):189–197. doi: 10.1093/genetics/147.1.189. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Comeron J. M., Kreitman M., Aguadé M. Natural selection on synonymous sites is correlated with gene length and recombination in Drosophila. Genetics. 1999 Jan;151(1):239–249. doi: 10.1093/genetics/151.1.239. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Danty E., Briand L., Michard-Vanhée C., Perez V., Arnold G., Gaudemer O., Huet D., Huet J. C., Ouali C., Masson C. Cloning and expression of a queen pheromone-binding protein in the honeybee: an olfactory-specific, developmentally regulated protein. J Neurosci. 1999 Sep 1;19(17):7468–7475. doi: 10.1523/JNEUROSCI.19-17-07468.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Galindo K., Smith D. P. A large family of divergent Drosophila odorant-binding proteins expressed in gustatory and olfactory sensilla. Genetics. 2001 Nov;159(3):1059–1072. doi: 10.1093/genetics/159.3.1059. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Goldman N., Yang Z. A codon-based model of nucleotide substitution for protein-coding DNA sequences. Mol Biol Evol. 1994 Sep;11(5):725–736. doi: 10.1093/oxfordjournals.molbev.a040153. [DOI] [PubMed] [Google Scholar]
  12. Hekmat-Scafe D. S., Dorit R. L., Carlson J. R. Molecular evolution of odorant-binding protein genes OS-E and OS-F in Drosophila. Genetics. 2000 May;155(1):117–127. doi: 10.1093/genetics/155.1.117. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hudson R. R., Kaplan N. L. Statistical properties of the number of recombination events in the history of a sample of DNA sequences. Genetics. 1985 Sep;111(1):147–164. doi: 10.1093/genetics/111.1.147. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hudson R. R., Kreitman M., Aguadé M. A test of neutral molecular evolution based on nucleotide data. Genetics. 1987 May;116(1):153–159. doi: 10.1093/genetics/116.1.153. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kelly J. K. A test of neutrality based on interlocus associations. Genetics. 1997 Jul;146(3):1197–1206. doi: 10.1093/genetics/146.3.1197. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kirby D. A., Stephan W. Multi-locus selection and the structure of variation at the white gene of Drosophila melanogaster. Genetics. 1996 Oct;144(2):635–645. doi: 10.1093/genetics/144.2.635. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kreitman M., Aguadé M. Genetic uniformity in two populations of Drosophila melanogaster as revealed by filter hybridization of four-nucleotide-recognizing restriction enzyme digests. Proc Natl Acad Sci U S A. 1986 May;83(10):3562–3566. doi: 10.1073/pnas.83.10.3562. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. McDonald J. H. Improved tests for heterogeneity across a region of DNA sequence in the ratio of polymorphism to divergence. Mol Biol Evol. 1998 Apr;15(4):377–384. doi: 10.1093/oxfordjournals.molbev.a025934. [DOI] [PubMed] [Google Scholar]
  19. McKenna M. P., Hekmat-Scafe D. S., Gaines P., Carlson J. R. Putative Drosophila pheromone-binding proteins expressed in a subregion of the olfactory system. J Biol Chem. 1994 Jun 10;269(23):16340–16347. [PubMed] [Google Scholar]
  20. Moriyama E. N., Powell J. R. Intraspecific nuclear DNA variation in Drosophila. Mol Biol Evol. 1996 Jan;13(1):261–277. doi: 10.1093/oxfordjournals.molbev.a025563. [DOI] [PubMed] [Google Scholar]
  21. Pelosi P., Maida R. Odorant-binding proteins in insects. Comp Biochem Physiol B Biochem Mol Biol. 1995 Jul;111(3):503–514. doi: 10.1016/0305-0491(95)00019-5. [DOI] [PubMed] [Google Scholar]
  22. Peng G., Leal W. S. Identification and cloning of a pheromone-binding protein from the Oriental beetle, Exomala orientalis. J Chem Ecol. 2001 Nov;27(11):2183–2192. doi: 10.1023/a:1012270602288. [DOI] [PubMed] [Google Scholar]
  23. Pikielny C. W., Hasan G., Rouyer F., Rosbash M. Members of a family of Drosophila putative odorant-binding proteins are expressed in different subsets of olfactory hairs. Neuron. 1994 Jan;12(1):35–49. doi: 10.1016/0896-6273(94)90150-3. [DOI] [PubMed] [Google Scholar]
  24. Plettner E., Lazar J., Prestwich E. G., Prestwich G. D. Discrimination of pheromone enantiomers by two pheromone binding proteins from the gypsy moth Lymantria dispar. Biochemistry. 2000 Aug 1;39(30):8953–8962. doi: 10.1021/bi000461x. [DOI] [PubMed] [Google Scholar]
  25. Ramos-Onsins S., Aguadé M. Molecular evolution of the Cecropin multigene family in Drosophila. functional genes vs. pseudogenes. Genetics. 1998 Sep;150(1):157–171. doi: 10.1093/genetics/150.1.157. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Rost B. Review: protein secondary structure prediction continues to rise. J Struct Biol. 2001 May-Jun;134(2-3):204–218. doi: 10.1006/jsbi.2001.4336. [DOI] [PubMed] [Google Scholar]
  27. Rozas J., Gullaud M., Blandin G., Aguadé M. DNA variation at the rp49 gene region of Drosophila simulans: evolutionary inferences from an unusual haplotype structure. Genetics. 2001 Jul;158(3):1147–1155. doi: 10.1093/genetics/158.3.1147. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Saiki R. K., Gelfand D. H., Stoffel S., Scharf S. J., Higuchi R., Horn G. T., Mullis K. B., Erlich H. A. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science. 1988 Jan 29;239(4839):487–491. doi: 10.1126/science.2448875. [DOI] [PubMed] [Google Scholar]
  29. Saitou N., Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987 Jul;4(4):406–425. doi: 10.1093/oxfordjournals.molbev.a040454. [DOI] [PubMed] [Google Scholar]
  30. Sandler B. H., Nikonova L., Leal W. S., Clardy J. Sexual attraction in the silkworm moth: structure of the pheromone-binding-protein-bombykol complex. Chem Biol. 2000 Feb;7(2):143–151. doi: 10.1016/s1074-5521(00)00078-8. [DOI] [PubMed] [Google Scholar]
  31. Scaloni A., Monti M., Angeli S., Pelosi P. Structural analysis and disulfide-bridge pairing of two odorant-binding proteins from Bombyx mori. Biochem Biophys Res Commun. 1999 Dec 20;266(2):386–391. doi: 10.1006/bbrc.1999.1791. [DOI] [PubMed] [Google Scholar]
  32. Steinbrecht R. A. Are odorant-binding proteins involved in odorant discrimination? Chem Senses. 1996 Dec;21(6):719–727. doi: 10.1093/chemse/21.6.719. [DOI] [PubMed] [Google Scholar]
  33. Tajima F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics. 1989 Nov;123(3):585–595. doi: 10.1093/genetics/123.3.585. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. U.S. National Institutes of Health. Recombinant DNA Advisory Committee. Human Gene Therapy Subcommitttee Minutes of meeting of the Human Gene Therapy Subcommittee, 30 Mar 1990. Hum Gene Ther. 1990 Winter;1(4):481–491. doi: 10.1089/hum.1990.1.4-481. [DOI] [PubMed] [Google Scholar]
  35. Vogt R. G., Riddiford L. M. Pheromone binding and inactivation by moth antennae. Nature. 1981 Sep 10;293(5828):161–163. doi: 10.1038/293161a0. [DOI] [PubMed] [Google Scholar]
  36. Vogt Richard G., Rogers Matthew E., Franco Marie-dominique, Sun Ming. A comparative study of odorant binding protein genes: differential expression of the PBP1-GOBP2 gene cluster in Manduca sexta (Lepidoptera) and the organization of OBP genes in Drosophila melanogaster (Diptera). J Exp Biol. 2002 Mar;205(Pt 6):719–744. doi: 10.1242/jeb.205.6.719. [DOI] [PubMed] [Google Scholar]
  37. Vosshall L. B., Amrein H., Morozov P. S., Rzhetsky A., Axel R. A spatial map of olfactory receptor expression in the Drosophila antenna. Cell. 1999 Mar 5;96(5):725–736. doi: 10.1016/s0092-8674(00)80582-6. [DOI] [PubMed] [Google Scholar]
  38. Vosshall L. B., Wong A. M., Axel R. An olfactory sensory map in the fly brain. Cell. 2000 Jul 21;102(2):147–159. doi: 10.1016/s0092-8674(00)00021-0. [DOI] [PubMed] [Google Scholar]
  39. Watterson G. A. On the number of segregating sites in genetical models without recombination. Theor Popul Biol. 1975 Apr;7(2):256–276. doi: 10.1016/0040-5809(75)90020-9. [DOI] [PubMed] [Google Scholar]
  40. Willett C. S. Evidence for directional selection acting on pheromone-binding proteins in the genus Choristoneura. Mol Biol Evol. 2000 Apr;17(4):553–562. doi: 10.1093/oxfordjournals.molbev.a026335. [DOI] [PubMed] [Google Scholar]
  41. Wu C. I., Li W. H. Evidence for higher rates of nucleotide substitution in rodents than in man. Proc Natl Acad Sci U S A. 1985 Mar;82(6):1741–1745. doi: 10.1073/pnas.82.6.1741. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Yang Z., Kumar S., Nei M. A new method of inference of ancestral nucleotide and amino acid sequences. Genetics. 1995 Dec;141(4):1641–1650. doi: 10.1093/genetics/141.4.1641. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Yang Z. PAML: a program package for phylogenetic analysis by maximum likelihood. Comput Appl Biosci. 1997 Oct;13(5):555–556. doi: 10.1093/bioinformatics/13.5.555. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES