Skip to main content
Genetics logoLink to Genetics
. 2003 Dec;165(4):1869–1879. doi: 10.1093/genetics/165.4.1869

The pineapple eye gene is required for survival of Drosophila imaginal disc cells.

Wei Shi 1, Argyrios Stampas 1, Cynthia Zapata 1, Nicholas E Baker 1
PMCID: PMC1462889  PMID: 14704172

Abstract

Each ommatidium of the Drosophila eye is constructed by precisely 19 specified precursor cells, generated in part during a second mitotic wave of cell divisions that overlaps early stages of ommatidial cell specification. Homozygotes for the pineapple eye mutation lack sufficient precursor cells due to apoptosis during the period of fate specification. In addition development is delayed by apoptosis during earlier imaginal disc growth. Null alleles are recessive lethal and allelic to l(2)31Ek; heteroallelic combinations can show developmental delay, abnormal eye development, and reduced fertility. Mosaic clones autonomously show extensive cell death. The pineapple eye gene was identified and predicted to encode a novel 582-amino-acid protein. The protein contains a novel, cysteine-rich domain of 270 amino acids also found in predicted proteins of unknown function from other animals.

Full Text

The Full Text of this article is available as a PDF (965.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams M. D., Celniker S. E., Holt R. A., Evans C. A., Gocayne J. D., Amanatides P. G., Scherer S. E., Li P. W., Hoskins R. A., Galle R. F. The genome sequence of Drosophila melanogaster. Science. 2000 Mar 24;287(5461):2185–2195. doi: 10.1126/science.287.5461.2185. [DOI] [PubMed] [Google Scholar]
  2. BECKER H. J. Uber Rontgenmosaikflecken und Defektmutationen am Auge von Drosophila und die Entwicklungsphysiologie des Auges. Z Indukt Abstamm Vererbungsl. 1957;88(3):333–373. [PubMed] [Google Scholar]
  3. Baker N. E., Moses K., Nakahara D., Ellis M. C., Carthew R. W., Rubin G. M. Mutations on the second chromosome affecting the Drosophila eye. J Neurogenet. 1992 May;8(2):85–100. doi: 10.3109/01677069209084154. [DOI] [PubMed] [Google Scholar]
  4. Baker N. E., Yu S. Y. The EGF receptor defines domains of cell cycle progression and survival to regulate cell number in the developing Drosophila eye. Cell. 2001 Mar 9;104(5):699–708. doi: 10.1016/s0092-8674(01)00266-5. [DOI] [PubMed] [Google Scholar]
  5. Clegg N. J., Whitehead I. P., Brock J. K., Sinclair D. A., Mottus R., Stromotich G., Harrington M. J., Grigliatti T. A. A cytogenetic analysis of chromosomal region 31 of Drosophila melanogaster. Genetics. 1993 May;134(1):221–230. doi: 10.1093/genetics/134.1.221. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Duman-Scheel Molly, Weng Li, Xin Shijie, Du Wei. Hedgehog regulates cell growth and proliferation by inducing Cyclin D and Cyclin E. Nature. 2002 May 16;417(6886):299–304. doi: 10.1038/417299a. [DOI] [PubMed] [Google Scholar]
  7. Edgar B. A., Britton J., de la Cruz A. F., Johnston L. A., Lehman D., Martin-Castellanos C., Prober D. Pattern- and growth-linked cell cycles in Drosophila development. Novartis Found Symp. 2001;237:3-12; discussion 12-8, 36-42. doi: 10.1002/0470846666.ch2. [DOI] [PubMed] [Google Scholar]
  8. Evans T., Rosenthal E. T., Youngblom J., Distel D., Hunt T. Cyclin: a protein specified by maternal mRNA in sea urchin eggs that is destroyed at each cleavage division. Cell. 1983 Jun;33(2):389–396. doi: 10.1016/0092-8674(83)90420-8. [DOI] [PubMed] [Google Scholar]
  9. Fu W., Noll M. The Pax2 homolog sparkling is required for development of cone and pigment cells in the Drosophila eye. Genes Dev. 1997 Aug 15;11(16):2066–2078. doi: 10.1101/gad.11.16.2066. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Gaul U., Mardon G., Rubin G. M. A putative Ras GTPase activating protein acts as a negative regulator of signaling by the Sevenless receptor tyrosine kinase. Cell. 1992 Mar 20;68(6):1007–1019. doi: 10.1016/0092-8674(92)90073-l. [DOI] [PubMed] [Google Scholar]
  11. Grether M. E., Abrams J. M., Agapite J., White K., Steller H. The head involution defective gene of Drosophila melanogaster functions in programmed cell death. Genes Dev. 1995 Jul 15;9(14):1694–1708. doi: 10.1101/gad.9.14.1694. [DOI] [PubMed] [Google Scholar]
  12. Hay B. A., Wolff T., Rubin G. M. Expression of baculovirus P35 prevents cell death in Drosophila. Development. 1994 Aug;120(8):2121–2129. doi: 10.1242/dev.120.8.2121. [DOI] [PubMed] [Google Scholar]
  13. Johnston L. A., Prober D. A., Edgar B. A., Eisenman R. N., Gallant P. Drosophila myc regulates cellular growth during development. Cell. 1999 Sep 17;98(6):779–790. doi: 10.1016/s0092-8674(00)81512-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Johnston Laura A., Gallant Peter. Control of growth and organ size in Drosophila. Bioessays. 2002 Jan;24(1):54–64. doi: 10.1002/bies.10021. [DOI] [PubMed] [Google Scholar]
  15. Knoblich J. A., Lehner C. F. Synergistic action of Drosophila cyclins A and B during the G2-M transition. EMBO J. 1993 Jan;12(1):65–74. doi: 10.1002/j.1460-2075.1993.tb05632.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kurada P., White K. Ras promotes cell survival in Drosophila by downregulating hid expression. Cell. 1998 Oct 30;95(3):319–329. doi: 10.1016/s0092-8674(00)81764-x. [DOI] [PubMed] [Google Scholar]
  17. Lambertsson A. The minute genes in Drosophila and their molecular functions. Adv Genet. 1998;38:69–134. doi: 10.1016/s0065-2660(08)60142-x. [DOI] [PubMed] [Google Scholar]
  18. Lee E. C., Yu S. Y., Baker N. E. The scabrous protein can act as an extracellular antagonist of notch signaling in the Drosophila wing. 2000 Jul 27-Aug 10Curr Biol. 10(15):931–934. doi: 10.1016/s0960-9822(00)00622-9. [DOI] [PubMed] [Google Scholar]
  19. Meinhardt H. Cell determination boundaries as organizing regions for secondary embryonic fields. Dev Biol. 1983 Apr;96(2):375–385. doi: 10.1016/0012-1606(83)90175-6. [DOI] [PubMed] [Google Scholar]
  20. Morata G., Ripoll P. Minutes: mutants of drosophila autonomously affecting cell division rate. Dev Biol. 1975 Feb;42(2):211–221. doi: 10.1016/0012-1606(75)90330-9. [DOI] [PubMed] [Google Scholar]
  21. Moreno Eduardo, Basler Konrad, Morata Ginés. Cells compete for decapentaplegic survival factor to prevent apoptosis in Drosophila wing development. Nature. 2002 Apr 18;416(6882):755–759. doi: 10.1038/416755a. [DOI] [PubMed] [Google Scholar]
  22. Neufeld T. P., de la Cruz A. F., Johnston L. A., Edgar B. A. Coordination of growth and cell division in the Drosophila wing. Cell. 1998 Jun 26;93(7):1183–1193. doi: 10.1016/s0092-8674(00)81462-2. [DOI] [PubMed] [Google Scholar]
  23. Oldham S., Böhni R., Stocker H., Brogiolo W., Hafen E. Genetic control of size in Drosophila. Philos Trans R Soc Lond B Biol Sci. 2000 Jul 29;355(1399):945–952. doi: 10.1098/rstb.2000.0630. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Russell M. A. Pattern formation in the imaginal discs of a temperature-sensitive cell-lethal mutant of Drosophila melanogaster. Dev Biol. 1974 Sep;40(1):24–39. doi: 10.1016/0012-1606(74)90104-3. [DOI] [PubMed] [Google Scholar]
  25. Sandler L. Evidence for a set of closely linked autosomal genes that interact with sex-chromosome heterochromatin in Drosophila melanogaster. Genetics. 1977 Jul;86(3):567–582. doi: 10.1093/genetics/86.3.567. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Sidén-Kiamos I., Saunders R. D., Spanos L., Majerus T., Treanear J., Savakis C., Louis C., Glover D. M., Ashburner M., Kafatos F. C. Towards a physical map of the Drosophila melanogaster genome: mapping of cosmid clones within defined genomic divisions. Nucleic Acids Res. 1990 Nov 11;18(21):6261–6270. doi: 10.1093/nar/18.21.6261. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Simpson P., Berreur P., Berreur-Bonnenfant J. The initiation of pupariation in Drosophila: dependence on growth of the imaginal discs. J Embryol Exp Morphol. 1980 Jun;57:155–165. [PubMed] [Google Scholar]
  28. Szabad J., Bryant P. J. The mode of action of "discless" mutations in Drosophila melanogaster. Dev Biol. 1982 Sep;93(1):240–256. doi: 10.1016/0012-1606(82)90256-1. [DOI] [PubMed] [Google Scholar]
  29. Török T., Tick G., Alvarado M., Kiss I. P-lacW insertional mutagenesis on the second chromosome of Drosophila melanogaster: isolation of lethals with different overgrowth phenotypes. Genetics. 1993 Sep;135(1):71–80. doi: 10.1093/genetics/135.1.71. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Wolff T., Ready D. F. Cell death in normal and rough eye mutants of Drosophila. Development. 1991 Nov;113(3):825–839. doi: 10.1242/dev.113.3.825. [DOI] [PubMed] [Google Scholar]
  31. Wootton J. C., Nicolson R. E., Cock J. M., Walters D. E., Burke J. F., Doyle W. A., Bray R. C. Enzymes depending on the pterin molybdenum cofactor: sequence families, spectroscopic properties of molybdenum and possible cofactor-binding domains. Biochim Biophys Acta. 1991 Mar 29;1057(2):157–185. doi: 10.1016/s0005-2728(05)80100-8. [DOI] [PubMed] [Google Scholar]
  32. Yu Sun-Yun, Yoo Soon Ji, Yang Lihui, Zapata Cynthia, Srinivasan Anu, Hay Bruce A., Baker Nicholas E. A pathway of signals regulating effector and initiator caspases in the developing Drosophila eye. Development. 2002 Jul;129(13):3269–3278. doi: 10.1242/dev.129.13.3269. [DOI] [PubMed] [Google Scholar]
  33. de Nooij J. C., Hariharan I. K. Uncoupling cell fate determination from patterned cell division in the Drosophila eye. Science. 1995 Nov 10;270(5238):983–985. doi: 10.1126/science.270.5238.983. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES