Skip to main content
Genetics logoLink to Genetics
. 2003 Dec;165(4):1761–1777. doi: 10.1093/genetics/165.4.1761

Polymorphism, recombination and alternative unscrambling in the DNA polymerase alpha gene of the ciliate Stylonychia lemnae (Alveolata; class Spirotrichea).

David H Ardell 1, Catherine A Lozupone 1, Laura F Landweber 1
PMCID: PMC1462920  PMID: 14704164

Abstract

DNA polymerase alpha is the most highly scrambled gene known in stichotrichous ciliates. In its hereditary micronuclear form, it is broken into >40 pieces on two loci at least 3 kb apart. Scrambled genes must be reassembled through developmental DNA rearrangements to yield functioning macronuclear genes, but the mechanism and accuracy of this process are unknown. We describe the first analysis of DNA polymorphism in the macronuclear version of any scrambled gene. Six functional haplotypes obtained from five Eurasian strains of Stylonychia lemnae were highly polymorphic compared to Drosophila genes. Another incompletely unscrambled haplotype was interrupted by frameshift and nonsense mutations but contained more silent mutations than expected by allelic inactivation. In our sample, nucleotide diversity and recombination signals were unexpectedly high within a region encompassing the boundary of the two micronuclear loci. From this and other evidence we infer that both members of a long repeat at the ends of the loci provide alternative substrates for unscrambling in this region. Incongruent genealogies and recombination patterns were also consistent with separation of the two loci by a large genetic distance. Our results suggest that ciliate developmental DNA rearrangements may be more probabilistic and error prone than previously appreciated and constitute a potential source of macronuclear variation. From this perspective we introduce the nonsense-suppression hypothesis for the evolution of ciliate altered genetic codes. We also introduce methods and software to calculate the likelihood of hemizygosity in ciliate haplotype samples and to correct for multiple comparisons in sliding-window analyses of Tajima's D.

Full Text

The Full Text of this article is available as a PDF (1.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ammermann D. Giant chromosomes in ciliates. Results Probl Cell Differ. 1987;14:59–67. doi: 10.1007/978-3-540-47783-9_4. [DOI] [PubMed] [Google Scholar]
  2. Ammermann D. Morphology and development of the macronuclei of the ciliates Stylonychia mytilus and Euplotes aediculatus. Chromosoma. 1971;33(2):209–238. doi: 10.1007/BF00285634. [DOI] [PubMed] [Google Scholar]
  3. Bernhard D. Several highly divergent histone H3 genes are present in the hypotrichous ciliate Stylonychia lemnae. FEMS Microbiol Lett. 1999 Jun 1;175(1):45–50. doi: 10.1111/j.1574-6968.1999.tb13600.x. [DOI] [PubMed] [Google Scholar]
  4. Byun R., Elbourne L. D., Lan R., Reeves P. R. Evolutionary relationships of pathogenic clones of Vibrio cholerae by sequence analysis of four housekeeping genes. Infect Immun. 1999 Mar;67(3):1116–1124. doi: 10.1128/iai.67.3.1116-1124.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cartinhour S. W., Herrick G. A. Three different macronuclear DNAs in Oxytricha fallax share a common sequence block. Mol Cell Biol. 1984 May;4(5):931–938. doi: 10.1128/mcb.4.5.931. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Chalker D. L., Yao M. C. Non-Mendelian, heritable blocks to DNA rearrangement are induced by loading the somatic nucleus of Tetrahymena thermophila with germ line-limited DNA. Mol Cell Biol. 1996 Jul;16(7):3658–3667. doi: 10.1128/mcb.16.7.3658. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Clark A. G. Inference of haplotypes from PCR-amplified samples of diploid populations. Mol Biol Evol. 1990 Mar;7(2):111–122. doi: 10.1093/oxfordjournals.molbev.a040591. [DOI] [PubMed] [Google Scholar]
  8. Damagnez V., Tillit J., de Recondo A. M., Baldacci G. The POL1 gene from the fission yeast, Schizosaccharomyces pombe, shows conserved amino acid blocks specific for eukaryotic DNA polymerases alpha. Mol Gen Genet. 1991 Apr;226(1-2):182–189. doi: 10.1007/BF00273602. [DOI] [PubMed] [Google Scholar]
  9. Deak J. C., Doerder F. P. High frequency intragenic recombination during macronuclear development in Tetrahymena thermophila restores the wild-type SerH1 gene. Genetics. 1998 Mar;148(3):1109–1115. doi: 10.1093/genetics/148.3.1109. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. DuBois M. L., Prescott D. M. Volatility of internal eliminated segments in germ line genes of hypotrichous ciliates. Mol Cell Biol. 1997 Jan;17(1):326–337. doi: 10.1128/mcb.17.1.326. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Duharcourt S., Keller A. M., Meyer E. Homology-dependent maternal inhibition of developmental excision of internal eliminated sequences in Paramecium tetraurelia. Mol Cell Biol. 1998 Dec;18(12):7075–7085. doi: 10.1128/mcb.18.12.7075. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Ewens W. J. The sampling theory of selectively neutral alleles. Theor Popul Biol. 1972 Mar;3(1):87–112. doi: 10.1016/0040-5809(72)90035-4. [DOI] [PubMed] [Google Scholar]
  13. Felsenstein J., Churchill G. A. A Hidden Markov Model approach to variation among sites in rate of evolution. Mol Biol Evol. 1996 Jan;13(1):93–104. doi: 10.1093/oxfordjournals.molbev.a025575. [DOI] [PubMed] [Google Scholar]
  14. Gerber Carri A., Lopez Alex B., Shook Steven J., Doerder F. Paul. Polymorphism and selection at the SerH immobilization antigen locus in natural populations of Tetrahymena thermophila. Genetics. 2002 Apr;160(4):1469–1479. doi: 10.1093/genetics/160.4.1469. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Herrick G., Hunter D., Williams K., Kotter K. Alternative processing during development of a macronuclear chromosome family in Oxytricha fallax. Genes Dev. 1987 Dec;1(10):1047–1058. doi: 10.1101/gad.1.10.1047. [DOI] [PubMed] [Google Scholar]
  16. Hill W. G., Robertson A. The effect of linkage on limits to artificial selection. Genet Res. 1966 Dec;8(3):269–294. [PubMed] [Google Scholar]
  17. Hoffman D. C., Prescott D. M. Evolution of internal eliminated segments and scrambling in the micronuclear gene encoding DNA polymerase alpha in two Oxytricha species. Nucleic Acids Res. 1997 May 15;25(10):1883–1889. doi: 10.1093/nar/25.10.1883. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Hoffman D. C., Prescott D. M. The germline gene encoding DNA polymerase alpha in the hypotrichous ciliate Oxytricha nova is extremely scrambled. Nucleic Acids Res. 1996 Sep 1;24(17):3337–3340. doi: 10.1093/nar/24.17.3337. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Hogan D. J., Hewitt E. A., Orr K. E., Prescott D. M., Müller K. M. Evolution of IESs and scrambling in the actin I gene in hypotrichous ciliates. Proc Natl Acad Sci U S A. 2001 Dec 11;98(26):15101–15106. doi: 10.1073/pnas.011578598. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Hudson Richard R. Generating samples under a Wright-Fisher neutral model of genetic variation. Bioinformatics. 2002 Feb;18(2):337–338. doi: 10.1093/bioinformatics/18.2.337. [DOI] [PubMed] [Google Scholar]
  21. Jakobsen I. B., Easteal S. A program for calculating and displaying compatibility matrices as an aid in determining reticulate evolution in molecular sequences. Comput Appl Biosci. 1996 Aug;12(4):291–295. doi: 10.1093/bioinformatics/12.4.291. [DOI] [PubMed] [Google Scholar]
  22. Karlin S., McGregor J. Addendum to a paper of W. Ewens. Theor Popul Biol. 1972 Mar;3(1):113–116. doi: 10.1016/0040-5809(72)90036-6. [DOI] [PubMed] [Google Scholar]
  23. Karotam J., Boyce T. M., Oakeshott J. G. Nucleotide variation at the hypervariable esterase 6 isozyme locus of Drosophila simulans. Mol Biol Evol. 1995 Jan;12(1):113–122. doi: 10.1093/oxfordjournals.molbev.a040180. [DOI] [PubMed] [Google Scholar]
  24. Klobutcher L. A., Huff M. E., Gonye G. E. Alternative use of chromosome fragmentation sites in the ciliated protozoan Oxytricha nova. Nucleic Acids Res. 1988 Jan 11;16(1):251–264. doi: 10.1093/nar/16.1.251. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Klobutcher L. A., Jahn C. L., Prescott D. M. Internal sequences are eliminated from genes during macronuclear development in the ciliated protozoan Oxytricha nova. Cell. 1984 Apr;36(4):1045–1055. doi: 10.1016/0092-8674(84)90054-0. [DOI] [PubMed] [Google Scholar]
  26. Kreitman M. Nucleotide polymorphism at the alcohol dehydrogenase locus of Drosophila melanogaster. Nature. 1983 Aug 4;304(5925):412–417. doi: 10.1038/304412a0. [DOI] [PubMed] [Google Scholar]
  27. Landweber L. F., Kuo T. C., Curtis E. A. Evolution and assembly of an extremely scrambled gene. Proc Natl Acad Sci U S A. 2000 Mar 28;97(7):3298–3303. doi: 10.1073/pnas.040574697. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Li W. H., Sadler L. A. Low nucleotide diversity in man. Genetics. 1991 Oct;129(2):513–523. doi: 10.1093/genetics/129.2.513. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Lozupone C. A., Knight R. D., Landweber L. F. The molecular basis of nuclear genetic code change in ciliates. Curr Biol. 2001 Jan 23;11(2):65–74. doi: 10.1016/s0960-9822(01)00028-8. [DOI] [PubMed] [Google Scholar]
  30. Mansour S. J., Hoffman D. C., Prescott D. M. A gene-sized DNA molecule encoding the catalytic subunit of DNA polymerase alpha in the macronucleus of Oxytricha nova. Gene. 1994 Jul 8;144(2):155–161. doi: 10.1016/0378-1119(94)90373-5. [DOI] [PubMed] [Google Scholar]
  31. McGuire G., Wright F. TOPAL 2.0: improved detection of mosaic sequences within multiple alignments. Bioinformatics. 2000 Feb;16(2):130–134. doi: 10.1093/bioinformatics/16.2.130. [DOI] [PubMed] [Google Scholar]
  32. McVean G. A., Charlesworth B. The effects of Hill-Robertson interference between weakly selected mutations on patterns of molecular evolution and variation. Genetics. 2000 Jun;155(2):929–944. doi: 10.1093/genetics/155.2.929. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Mochizuki Kazufumi, Fine Noah A., Fujisawa Toshitaka, Gorovsky Martin A. Analysis of a piwi-related gene implicates small RNAs in genome rearrangement in tetrahymena. Cell. 2002 Sep 20;110(6):689–699. doi: 10.1016/s0092-8674(02)00909-1. [DOI] [PubMed] [Google Scholar]
  34. Moriyama E. N., Powell J. R. Intraspecific nuclear DNA variation in Drosophila. Mol Biol Evol. 1996 Jan;13(1):261–277. doi: 10.1093/oxfordjournals.molbev.a025563. [DOI] [PubMed] [Google Scholar]
  35. Prescott D. M., DuBois M. L. Internal eliminated segments (IESs) of Oxytrichidae. J Eukaryot Microbiol. 1996 Nov-Dec;43(6):432–441. doi: 10.1111/j.1550-7408.1996.tb04502.x. [DOI] [PubMed] [Google Scholar]
  36. Prescott D. M., Greslin A. F. Scrambled actin I gene in the micronucleus of Oxytricha nova. Dev Genet. 1992;13(1):66–74. doi: 10.1002/dvg.1020130111. [DOI] [PubMed] [Google Scholar]
  37. Prescott D. M., Murti K. G. Chromosome structure in ciliated protozoans. Cold Spring Harb Symp Quant Biol. 1974;38:609–618. doi: 10.1101/sqb.1974.038.01.065. [DOI] [PubMed] [Google Scholar]
  38. Prescott D. M. The evolutionary scrambling and developmental unscrambling of germline genes in hypotrichous ciliates. Nucleic Acids Res. 1999 Mar 1;27(5):1243–1250. doi: 10.1093/nar/27.5.1243. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Prescott J. D., DuBois M. L., Prescott D. M. Evolution of the scrambled germline gene encoding alpha-telomere binding protein in three hypotrichous ciliates. Chromosoma. 1998 Nov;107(5):293–303. doi: 10.1007/s004120050311. [DOI] [PubMed] [Google Scholar]
  40. Przeworski M., Hudson R. R., Di Rienzo A. Adjusting the focus on human variation. Trends Genet. 2000 Jul;16(7):296–302. doi: 10.1016/s0168-9525(00)02030-8. [DOI] [PubMed] [Google Scholar]
  41. Ribas-Aparicio R. M., Sparkowski J. J., Proulx A. E., Mitchell J. D., Klobutcher L. A. Nucleic acid splicing events occur frequently during macronuclear development in the protozoan Oxytricha nova and involve the elimination of unique DNA. Genes Dev. 1987 Jun;1(4):323–336. doi: 10.1101/gad.1.4.323. [DOI] [PubMed] [Google Scholar]
  42. Rozas J., Rozas R. DnaSP version 3: an integrated program for molecular population genetics and molecular evolution analysis. Bioinformatics. 1999 Feb;15(2):174–175. doi: 10.1093/bioinformatics/15.2.174. [DOI] [PubMed] [Google Scholar]
  43. Seegmiller A., Williams K. R., Hammersmith R. L., Doak T. G., Witherspoon D., Messick T., Storjohann L. L., Herrick G. Internal eliminated sequences interrupting the Oxytricha 81 locus: allelic divergence, conservation, conversions, and possible transposon origins. Mol Biol Evol. 1996 Dec;13(10):1351–1362. doi: 10.1093/oxfordjournals.molbev.a025581. [DOI] [PubMed] [Google Scholar]
  44. Stajich Jason E., Block David, Boulez Kris, Brenner Steven E., Chervitz Stephen A., Dagdigian Chris, Fuellen Georg, Gilbert James G. R., Korf Ian, Lapp Hilmar. The Bioperl toolkit: Perl modules for the life sciences. Genome Res. 2002 Oct;12(10):1611–1618. doi: 10.1101/gr.361602. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Tajima F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics. 1989 Nov;123(3):585–595. doi: 10.1093/genetics/123.3.585. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Taverna Sean D., Coyne Robert S., Allis C. David. Methylation of histone h3 at lysine 9 targets programmed DNA elimination in tetrahymena. Cell. 2002 Sep 20;110(6):701–711. doi: 10.1016/s0092-8674(02)00941-8. [DOI] [PubMed] [Google Scholar]
  47. Thompson J. D., Higgins D. G., Gibson T. J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994 Nov 11;22(22):4673–4680. doi: 10.1093/nar/22.22.4673. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Williams K. R., Herrick G. Expression of the gene encoded by a family of macronuclear chromosomes generated by alternative DNA processing in Oxytricha fallax. Nucleic Acids Res. 1991 Sep 11;19(17):4717–4724. doi: 10.1093/nar/19.17.4717. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Williamson Scott, Orive Maria E. The genealogy of a sequence subject to purifying selection at multiple sites. Mol Biol Evol. 2002 Aug;19(8):1376–1384. doi: 10.1093/oxfordjournals.molbev.a004199. [DOI] [PubMed] [Google Scholar]
  50. Wong S. W., Wahl A. F., Yuan P. M., Arai N., Pearson B. E., Arai K., Korn D., Hunkapiller M. W., Wang T. S. Human DNA polymerase alpha gene expression is cell proliferation dependent and its primary structure is similar to both prokaryotic and eukaryotic replicative DNA polymerases. EMBO J. 1988 Jan;7(1):37–47. doi: 10.1002/j.1460-2075.1988.tb02781.x. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES