Skip to main content
Genetics logoLink to Genetics
. 2003 Dec;165(4):2007–2027. doi: 10.1093/genetics/165.4.2007

Recruitment of the proneural gene scute to the Drosophila sex-determination pathway.

Lisa A Wrischnik 1, John R Timmer 1, Lisa A Megna 1, Thomas W Cline 1
PMCID: PMC1462923  PMID: 14704182

Abstract

In flies, scute (sc) works with its paralogs in the achaete-scute-complex (ASC) to direct neuronal development. However, in the family Drosophilidae, sc also acquired a role in the primary event of sex determination, X chromosome counting, by becoming an X chromosome signal element (XSE)-an evolutionary step shown here to have occurred after sc diverged from its closest paralog, achaete (ac). Two temperature-sensitive alleles, sc(sisB2) and sc(sisB3), which disrupt only sex determination, were recovered in a powerful F1 genetic selection and used to investigate how sc was recruited to the sex-determination pathway. sc(sisB2) revealed 3' nontranscribed regulatory sequences likely to be involved. The sc(sisB2) lesion abolished XSE activity when combined with mutations engineered in a sequence upstream of all XSEs. In contrast, changes in Sc protein sequence seem not to have been important for recruitment. The observation that the other new allele, sc(sisB3), eliminates the C-terminal half of Sc without affecting neurogenesis and that sc(sisB1), the most XSE-specific allele previously available, is a nonsense mutant, would seem to suggest the opposite, but we show that housefly Sc can substitute for fruit fly Sc in sex determination, despite lacking Drosophilidae-specific conserved residues in its C-terminal half. Lack of synergistic lethality among mutations in sc, twist, and dorsal argue against a proposed role for sc in mesoderm formation that had seemed potentially relevant to sex-pathway recruitment. The screen that yielded new sc alleles also generated autosomal duplications that argue against the textbook view that fruit fly sex signal evolution recruited a set of autosomal signal elements comparable to the XSEs.

Full Text

The Full Text of this article is available as a PDF (601.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alonso M. C., Cabrera C. V. The achaete-scute gene complex of Drosophila melanogaster comprises four homologous genes. EMBO J. 1988 Aug;7(8):2585–2591. doi: 10.1002/j.1460-2075.1988.tb03108.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Balcells L., Modolell J., Ruiz-Gómez M. A unitary basis for different Hairy-wing mutations of Drosophila melanogaster. EMBO J. 1988 Dec 1;7(12):3899–3906. doi: 10.1002/j.1460-2075.1988.tb03276.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Barbash D. A., Cline T. W. Genetic and molecular analysis of the autosomal component of the primary sex determination signal of Drosophila melanogaster. Genetics. 1995 Dec;141(4):1451–1471. doi: 10.1093/genetics/141.4.1451. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bernstein M., Lersch R. A., Subrahmanyan L., Cline T. W. Transposon insertions causing constitutive Sex-lethal activity in Drosophila melanogaster affect Sxl sex-specific transcript splicing. Genetics. 1995 Feb;139(2):631–648. doi: 10.1093/genetics/139.2.631. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bopp D., Calhoun G., Horabin J. I., Samuels M., Schedl P. Sex-specific control of Sex-lethal is a conserved mechanism for sex determination in the genus Drosophila. Development. 1996 Mar;122(3):971–982. doi: 10.1242/dev.122.3.971. [DOI] [PubMed] [Google Scholar]
  6. Botas J., Moscoso del Prado J., García-Bellido A. Gene-dose titration analysis in the search of trans-regulatory genes in Drosophila. EMBO J. 1982;1(3):307–310. doi: 10.1002/j.1460-2075.1982.tb01165.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Botella L. M., Doñoro C., Sánchez L., Segarra C., Granadino B. Cloning and characterization of the scute (sc) gene of Drosophila subobscura. Genetics. 1996 Nov;144(3):1043–1051. doi: 10.1093/genetics/144.3.1043. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Bridges C. B. TRIPLOID INTERSEXES IN DROSOPHILA MELANOGASTER. Science. 1921 Sep 16;54(1394):252–254. doi: 10.1126/science.54.1394.252. [DOI] [PubMed] [Google Scholar]
  9. Calleja Manuel, Renaud Olivier, Usui Kazuya, Pistillo Daniela, Morata Ginès, Simpson Pat. How to pattern an epithelium: lessons from achaete-scute regulation on the notum of Drosophila. Gene. 2002 Jun 12;292(1-2):1–12. doi: 10.1016/s0378-1119(02)00628-5. [DOI] [PubMed] [Google Scholar]
  10. Campos-Ortega J. A. The genetics of the Drosophila achaete-scute gene complex: a historical appraisal. Int J Dev Biol. 1998;42(3):291–297. [PubMed] [Google Scholar]
  11. Campuzano S., Carramolino L., Cabrera C. V., Ruíz-Gómez M., Villares R., Boronat A., Modolell J. Molecular genetics of the achaete-scute gene complex of D. melanogaster. Cell. 1985 Feb;40(2):327–338. doi: 10.1016/0092-8674(85)90147-3. [DOI] [PubMed] [Google Scholar]
  12. Campuzano S. Emc, a negative HLH regulator with multiple functions in Drosophila development. Oncogene. 2001 Dec 20;20(58):8299–8307. doi: 10.1038/sj.onc.1205162. [DOI] [PubMed] [Google Scholar]
  13. Carmi I., Kopczynski J. B., Meyer B. J. The nuclear hormone receptor SEX-1 is an X-chromosome signal that determines nematode sex. Nature. 1998 Nov 12;396(6707):168–173. doi: 10.1038/24164. [DOI] [PubMed] [Google Scholar]
  14. Cline T. W. A female-specific lethal lesion in an X-linked positive regulator of the Drosophila sex determination gene, Sex-lethal. Genetics. 1986 Jul;113(3):641–663. doi: 10.1093/genetics/113.3.641. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Cline T. W. A lesson from flex: consider the Y chromosome when assessing Drosophila sex-specific lethals. Development. 2001 Mar;128(6):1015–1018. doi: 10.1242/dev.128.6.1015. [DOI] [PubMed] [Google Scholar]
  16. Cline T. W. Evidence that sisterless-a and sisterless-b are two of several discrete "numerator elements" of the X/A sex determination signal in Drosophila that switch Sxl between two alternative stable expression states. Genetics. 1988 Aug;119(4):829–862. doi: 10.1093/genetics/119.4.829. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Cline T. W., Meyer B. J. Vive la différence: males vs females in flies vs worms. Annu Rev Genet. 1996;30:637–702. doi: 10.1146/annurev.genet.30.1.637. [DOI] [PubMed] [Google Scholar]
  18. Cline T. W., Rudner D. Z., Barbash D. A., Bell M., Vutien R. Functioning of the Drosophila integral U1/U2 protein Snf independent of U1 and U2 small nuclear ribonucleoprotein particles is revealed by snf(+) gene dose effects. Proc Natl Acad Sci U S A. 1999 Dec 7;96(25):14451–14458. doi: 10.1073/pnas.96.25.14451. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Cronmiller C., Schedl P., Cline T. W. Molecular characterization of daughterless, a Drosophila sex determination gene with multiple roles in development. Genes Dev. 1988 Dec;2(12A):1666–1676. doi: 10.1101/gad.2.12a.1666. [DOI] [PubMed] [Google Scholar]
  20. Culí J., Modolell J. Proneural gene self-stimulation in neural precursors: an essential mechanism for sense organ development that is regulated by Notch signaling. Genes Dev. 1998 Jul 1;12(13):2036–2047. doi: 10.1101/gad.12.13.2036. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Dambly-Chaudière C., Vervoort M. The bHLH genes in neural development. Int J Dev Biol. 1998;42(3):269–273. [PubMed] [Google Scholar]
  22. Deshpande G., Samuels M. E., Schedl P. D. Sex-lethal interacts with splicing factors in vitro and in vivo. Mol Cell Biol. 1996 Sep;16(9):5036–5047. doi: 10.1128/mcb.16.9.5036. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Deshpande G., Stukey J., Schedl P. scute (sis-b) function in Drosophila sex determination. Mol Cell Biol. 1995 Aug;15(8):4430–4440. doi: 10.1128/mcb.15.8.4430. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Erickson J. W., Cline T. W. A bZIP protein, sisterless-a, collaborates with bHLH transcription factors early in Drosophila development to determine sex. Genes Dev. 1993 Sep;7(9):1688–1702. doi: 10.1101/gad.7.9.1688. [DOI] [PubMed] [Google Scholar]
  25. Erickson J. W., Cline T. W. Key aspects of the primary sex determination mechanism are conserved across the genus Drosophila. Development. 1998 Aug;125(16):3259–3268. doi: 10.1242/dev.125.16.3259. [DOI] [PubMed] [Google Scholar]
  26. García-Bellido A. Genetic Analysis of the Achaete-Scute System of DROSOPHILA MELANOGASTER. Genetics. 1979 Mar;91(3):491–520. doi: 10.1093/genetics/91.3.491. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. González-Crespo S., Levine M. Interactions between dorsal and helix-loop-helix proteins initiate the differentiation of the embryonic mesoderm and neuroectoderm in Drosophila. Genes Dev. 1993 Sep;7(9):1703–1713. doi: 10.1101/gad.7.9.1703. [DOI] [PubMed] [Google Scholar]
  28. Gómez-Skarmeta J. L., Rodríguez I., Martínez C., Culí J., Ferrés-Marcó D., Beamonte D., Modolell J. Cis-regulation of achaete and scute: shared enhancer-like elements drive their coexpression in proneural clusters of the imaginal discs. Genes Dev. 1995 Aug 1;9(15):1869–1882. doi: 10.1101/gad.9.15.1869. [DOI] [PubMed] [Google Scholar]
  29. Hedley M. L., Maniatis T. Sex-specific splicing and polyadenylation of dsx pre-mRNA requires a sequence that binds specifically to tra-2 protein in vitro. Cell. 1991 May 17;65(4):579–586. doi: 10.1016/0092-8674(91)90090-l. [DOI] [PubMed] [Google Scholar]
  30. Hinz U., Giebel B., Campos-Ortega J. A. The basic-helix-loop-helix domain of Drosophila lethal of scute protein is sufficient for proneural function and activates neurogenic genes. Cell. 1994 Jan 14;76(1):77–87. doi: 10.1016/0092-8674(94)90174-0. [DOI] [PubMed] [Google Scholar]
  31. Keyes L. N., Cline T. W., Schedl P. The primary sex determination signal of Drosophila acts at the level of transcription. Cell. 1992 Mar 6;68(5):933–943. doi: 10.1016/0092-8674(92)90036-c. [DOI] [PubMed] [Google Scholar]
  32. Klagges B. R., Heimbeck G., Godenschwege T. A., Hofbauer A., Pflugfelder G. O., Reifegerste R., Reisch D., Schaupp M., Buchner S., Buchner E. Invertebrate synapsins: a single gene codes for several isoforms in Drosophila. J Neurosci. 1996 May 15;16(10):3154–3165. doi: 10.1523/JNEUROSCI.16-10-03154.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Kwiatowski J., Skarecky D., Bailey K., Ayala F. J. Phylogeny of Drosophila and related genera inferred from the nucleotide sequence of the Cu,Zn Sod gene. J Mol Evol. 1994 May;38(5):443–454. doi: 10.1007/BF00178844. [DOI] [PubMed] [Google Scholar]
  34. Lecuit T., Wieschaus E. Polarized insertion of new membrane from a cytoplasmic reservoir during cleavage of the Drosophila embryo. J Cell Biol. 2000 Aug 21;150(4):849–860. doi: 10.1083/jcb.150.4.849. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Lee W. R., Sega G. A., Bishop J. B. Chemically induced mutations observed as mosaics in Drosophila melanogaster. Mutat Res. 1970 Mar;9(3):323–336. doi: 10.1016/0027-5107(70)90133-8. [DOI] [PubMed] [Google Scholar]
  36. Long A. D., Lyman R. F., Morgan A. H., Langley C. H., Mackay T. F. Both naturally occurring insertions of transposable elements and intermediate frequency polymorphisms at the achaete-scute complex are associated with variation in bristle number in Drosophila melanogaster. Genetics. 2000 Mar;154(3):1255–1269. doi: 10.1093/genetics/154.3.1255. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Modolell J., Campuzano S. The achaete-scute complex as an integrating device. Int J Dev Biol. 1998;42(3):275–282. [PubMed] [Google Scholar]
  38. Nirmala X., Hypsa V., Zurovec M. Molecular phylogeny of Calyptratae (Diptera: Brachycera): the evolution of 18S and 16S ribosomal rDNAs in higher dipterans and their use in phylogenetic inference. Insect Mol Biol. 2001 Oct;10(5):475–485. [PubMed] [Google Scholar]
  39. Ohsako S., Hyer J., Panganiban G., Oliver I., Caudy M. Hairy function as a DNA-binding helix-loop-helix repressor of Drosophila sensory organ formation. Genes Dev. 1994 Nov 15;8(22):2743–2755. doi: 10.1101/gad.8.22.2743. [DOI] [PubMed] [Google Scholar]
  40. Oliver B., Perrimon N., Mahowald A. P. Genetic evidence that the sans fille locus is involved in Drosophila sex determination. Genetics. 1988 Sep;120(1):159–171. doi: 10.1093/genetics/120.1.159. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Parkhurst S. M., Lipshitz H. D., Ish-Horowicz D. achaete-scute feminizing activities and Drosophila sex determination. Development. 1993 Feb;117(2):737–749. doi: 10.1242/dev.117.2.737. [DOI] [PubMed] [Google Scholar]
  42. Parras C., García-Alonso L. A., Rodriguez I., Jiménez F. Control of neural precursor specification by proneural proteins in the CNS of Drosophila. EMBO J. 1996 Dec 2;15(23):6394–6399. [PMC free article] [PubMed] [Google Scholar]
  43. Pirrotta V. Vectors for P-mediated transformation in Drosophila. Biotechnology. 1988;10:437–456. doi: 10.1016/b978-0-409-90042-2.50028-3. [DOI] [PubMed] [Google Scholar]
  44. Rodríguez I., Hernández R., Modolell J., Ruiz-Gómez M. Competence to develop sensory organs is temporally and spatially regulated in Drosophila epidermal primordia. EMBO J. 1990 Nov;9(11):3583–3592. doi: 10.1002/j.1460-2075.1990.tb07569.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Rong Yikang S., Titen Simon W., Xie Heng B., Golic Mary M., Bastiani Michael, Bandyopadhyay Pradip, Olivera Baldomero M., Brodsky Michael, Rubin Gerald M., Golic Kent G. Targeted mutagenesis by homologous recombination in D. melanogaster. Genes Dev. 2002 Jun 15;16(12):1568–1581. doi: 10.1101/gad.986602. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Russo C. A., Takezaki N., Nei M. Molecular phylogeny and divergence times of drosophilid species. Mol Biol Evol. 1995 May;12(3):391–404. doi: 10.1093/oxfordjournals.molbev.a040214. [DOI] [PubMed] [Google Scholar]
  47. Saccone G., Pane A., Polito L. C. Sex determination in flies, fruitflies and butterflies. Genetica. 2002 Sep;116(1):15–23. doi: 10.1023/a:1020903523907. [DOI] [PubMed] [Google Scholar]
  48. Salz H. K., Flickinger T. W. Both loss-of-function and gain-of-function mutations in snf define a role for snRNP proteins in regulating Sex-lethal pre-mRNA splicing in Drosophila development. Genetics. 1996 Sep;144(1):95–108. doi: 10.1093/genetics/144.1.95. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Salz H. K. The genetic analysis of snf: a Drosophila sex determination gene required for activation of Sex-lethal in both the germline and the soma. Genetics. 1992 Mar;130(3):547–554. doi: 10.1093/genetics/130.3.547. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Schejter E. D., Wieschaus E. bottleneck acts as a regulator of the microfilament network governing cellularization of the Drosophila embryo. Cell. 1993 Oct 22;75(2):373–385. doi: 10.1016/0092-8674(93)80078-s. [DOI] [PubMed] [Google Scholar]
  51. Sefton L., Timmer J. R., Zhang Y., Béranger F., Cline T. W. An extracellular activator of the Drosophila JAK/STAT pathway is a sex-determination signal element. Nature. 2000 Jun 22;405(6789):970–973. doi: 10.1038/35016119. [DOI] [PubMed] [Google Scholar]
  52. Simpson P. Maternal-Zygotic Gene Interactions during Formation of the Dorsoventral Pattern in Drosophila Embryos. Genetics. 1983 Nov;105(3):615–632. doi: 10.1093/genetics/105.3.615. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Skaer Nick, Pistillo Daniela, Gibert Jean-Michel, Lio Pietro, Wülbeck Corinna, Simpson Pat. Gene duplication at the achaete-scute complex and morphological complexity of the peripheral nervous system in Diptera. Trends Genet. 2002 Aug;18(8):399–405. doi: 10.1016/s0168-9525(02)02747-6. [DOI] [PubMed] [Google Scholar]
  54. Skeath J. B., Carroll S. B. The achaete-scute complex: generation of cellular pattern and fate within the Drosophila nervous system. FASEB J. 1994 Jul;8(10):714–721. doi: 10.1096/fasebj.8.10.8050670. [DOI] [PubMed] [Google Scholar]
  55. Skeath J. B., Doe C. Q. The achaete-scute complex proneural genes contribute to neural precursor specification in the Drosophila CNS. Curr Biol. 1996 Sep 1;6(9):1146–1152. doi: 10.1016/s0960-9822(02)70681-7. [DOI] [PubMed] [Google Scholar]
  56. Spradling A. C., Stern D., Beaton A., Rhem E. J., Laverty T., Mozden N., Misra S., Rubin G. M. The Berkeley Drosophila Genome Project gene disruption project: Single P-element insertions mutating 25% of vital Drosophila genes. Genetics. 1999 Sep;153(1):135–177. doi: 10.1093/genetics/153.1.135. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Steinmann-Zwicky M. Sex determination in Drosophila: the X-chromosomal gene liz is required for Sxl activity. EMBO J. 1988 Dec 1;7(12):3889–3898. doi: 10.1002/j.1460-2075.1988.tb03275.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Takano T. S. Rate variation of DNA sequence evolution in the Drosophila lineages. Genetics. 1998 Jun;149(2):959–970. doi: 10.1093/genetics/149.2.959. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Torres M., Sánchez L. The scute (T4) gene acts as a numerator element of the X:a signal that determines the state of activity of sex-lethal in Drosophila. EMBO J. 1989 Oct;8(10):3079–3086. doi: 10.1002/j.1460-2075.1989.tb08459.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. Torres M., Sánchez L. The sisterless-b function of the Drosophila gene scute is restricted to the stage when the X:A ratio determines the activity of Sex-lethal. Development. 1991 Oct;113(2):715–722. doi: 10.1242/dev.113.2.715. [DOI] [PubMed] [Google Scholar]
  61. True John R., Carroll Sean B. Gene co-option in physiological and morphological evolution. Annu Rev Cell Dev Biol. 2002 Apr 2;18:53–80. doi: 10.1146/annurev.cellbio.18.020402.140619. [DOI] [PubMed] [Google Scholar]
  62. Van Doren M., Bailey A. M., Esnayra J., Ede K., Posakony J. W. Negative regulation of proneural gene activity: hairy is a direct transcriptional repressor of achaete. Genes Dev. 1994 Nov 15;8(22):2729–2742. doi: 10.1101/gad.8.22.2729. [DOI] [PubMed] [Google Scholar]
  63. Villares R., Cabrera C. V. The achaete-scute gene complex of D. melanogaster: conserved domains in a subset of genes required for neurogenesis and their homology to myc. Cell. 1987 Jul 31;50(3):415–424. doi: 10.1016/0092-8674(87)90495-8. [DOI] [PubMed] [Google Scholar]
  64. Walker J. J., Lee K. K., Desai R. N., Erickson J. W. The Drosophila melanogaster sex determination gene sisA is required in yolk nuclei for midgut formation. Genetics. 2000 May;155(1):191–202. doi: 10.1093/genetics/155.1.191. [DOI] [PMC free article] [PubMed] [Google Scholar]
  65. Washburn T., O'Tousa J. E. Nonsense suppression of the major rhodopsin gene of Drosophila. Genetics. 1992 Mar;130(3):585–595. doi: 10.1093/genetics/130.3.585. [DOI] [PMC free article] [PubMed] [Google Scholar]
  66. Wülbeck C., Simpson P. Expression of achaete-scute homologues in discrete proneural clusters on the developing notum of the medfly Ceratitis capitata, suggests a common origin for the stereotyped bristle patterns of higher Diptera. Development. 2000 Apr;127(7):1411–1420. doi: 10.1242/dev.127.7.1411. [DOI] [PubMed] [Google Scholar]
  67. Wülbeck Corinna, Simpson Pat. The expression of pannier and achaete-scute homologues in a mosquito suggests an ancient role of pannier as a selector gene in the regulation of the dorsal body pattern. Development. 2002 Aug;129(16):3861–3871. doi: 10.1242/dev.129.16.3861. [DOI] [PubMed] [Google Scholar]
  68. Yang D., Lu H., Hong Y., Jinks T. M., Estes P. A., Erickson J. W. Interpretation of X chromosome dose at Sex-lethal requires non-E-box sites for the basic helix-loop-helix proteins SISB and daughterless. Mol Cell Biol. 2001 Mar;21(5):1581–1592. doi: 10.1128/MCB.21.5.1581-1592.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  69. Younger-Shepherd S., Vaessin H., Bier E., Jan L. Y., Jan Y. N. deadpan, an essential pan-neural gene encoding an HLH protein, acts as a denominator in Drosophila sex determination. Cell. 1992 Sep 18;70(6):911–922. doi: 10.1016/0092-8674(92)90242-5. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES