Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1997 Mar 1;25(5):1036–1041. doi: 10.1093/nar/25.5.1036

Characterization of multigene families in the micronuclear genome of Paramecium tetraurelia reveals a germline specific sequence in an intron of a centrin gene.

L Vayssié 1, L Sperling 1, L Madeddu 1
PMCID: PMC146544  PMID: 9023115

Abstract

In Paramecium, as in other ciliates, the transcriptionally active macronucleus is derived from the germline micronucleus by programmed DNA rearrangements, which include the precise excision of thousands of germline-specific sequences (internal eliminated sequences, IESs). We report the characterization of micronuclear versions of genes encoding Paramecium secretory granule proteins (trichocyst matrix proteins, TMPs) and Paramecium centrins. TMP and centrin multigene families, previously studied in the macronuclear genome, consist of genes that are co-expressed to provide mixtures of related polypeptides that co-assemble to form respectively the crystalline trichocyst matrix and the infraciliary lattice, a contractile cytoskeletal network. We present evidence that TMP and centrin genes identified in the macronucleus are also present in the micronucleus, ruling out the possibility that these novel multigene families are generated by somatic rearrangements during macronuclear development. No IESs were found in TMP genes, however, four IESs in or near germline centrin genes were characterized. The only intragenic IES is 75 bp in size, interrupts a 29 bp intron and is absent from at least one other closely related centrin gene. This is the first report of an IES in an intron in Paramecium.

Full Text

The Full Text of this article is available as a PDF (164.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amar L. Chromosome end formation and internal sequence elimination as alternative genomic rearrangements in the ciliate Paramecium. J Mol Biol. 1994 Feb 18;236(2):421–426. doi: 10.1006/jmbi.1994.1154. [DOI] [PubMed] [Google Scholar]
  2. Austerberry C. F., Yao M. C. Sequence structures of two developmentally regulated, alternative DNA deletion junctions in Tetrahymena thermophila. Mol Cell Biol. 1988 Sep;8(9):3947–3950. doi: 10.1128/mcb.8.9.3947. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Church G. M., Gilbert W. Genomic sequencing. Proc Natl Acad Sci U S A. 1984 Apr;81(7):1991–1995. doi: 10.1073/pnas.81.7.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Coffe G., Le Caer J. P., Lima O., Adoutte A. Purification, in vitro reassembly, and preliminary sequence analysis of epiplasmins, the major constituent of the membrane skeleton of Paramecium. Cell Motil Cytoskeleton. 1996;34(2):137–151. doi: 10.1002/(SICI)1097-0169(1996)34:2<137::AID-CM5>3.0.CO;2-8. [DOI] [PubMed] [Google Scholar]
  5. Dupuis P. The beta-tubulin genes of Paramecium are interrupted by two 27 bp introns. EMBO J. 1992 Oct;11(10):3713–3719. doi: 10.1002/j.1460-2075.1992.tb05456.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Fraga D., Hinrichsen R. D. The identification of a complex family of low-molecular-weight GTP-binding protein homologues from Paramecium tetraurelia by PCR cloning. Gene. 1994 Sep 15;147(1):145–148. doi: 10.1016/0378-1119(94)90055-8. [DOI] [PubMed] [Google Scholar]
  7. Gautier M. C., Sperling L., MadedduL Cloning and sequence analysis of genes coding for paramecium secretory granule (trichocyst) proteins. A unique protein fold for a family of polypeptides with different primary structures. J Biol Chem. 1996 Apr 26;271(17):10247–10255. doi: 10.1074/jbc.271.17.10247. [DOI] [PubMed] [Google Scholar]
  8. Heinonen T. Y., Pearlman R. E. A germ line-specific sequence element in an intron in Tetrahymena thermophila. J Biol Chem. 1994 Jul 1;269(26):17428–17433. [PubMed] [Google Scholar]
  9. Klobutcher L. A., Herrick G. Consensus inverted terminal repeat sequence of Paramecium IESs: resemblance to termini of Tc1-related and Euplotes Tec transposons. Nucleic Acids Res. 1995 Jun 11;23(11):2006–2013. doi: 10.1093/nar/23.11.2006. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Li J., Pearlman R. E. Programmed DNA rearrangement from an intron during nuclear development in Tetrahymena thermophila: molecular analysis and identification of potential cis-acting sequences. Nucleic Acids Res. 1996 May 15;24(10):1943–1949. doi: 10.1093/nar/24.10.1943. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Madeddu L., Gautier M. C., Vayssié L., Houari A., Sperling L. A large multigene family codes for the polypeptides of the crystalline trichocyst matrix in Paramecium. Mol Biol Cell. 1995 Jun;6(6):649–659. doi: 10.1091/mbc.6.6.649. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Madeddu L., Klotz C., Le Caer J. P., Beisson J. Characterization of centrin genes in Paramecium. Eur J Biochem. 1996 May 15;238(1):121–128. doi: 10.1111/j.1432-1033.1996.0121q.x. [DOI] [PubMed] [Google Scholar]
  13. Maestre J., Tchénio T., Dhellin O., Heidmann T. mRNA retroposition in human cells: processed pseudogene formation. EMBO J. 1995 Dec 15;14(24):6333–6338. doi: 10.1002/j.1460-2075.1995.tb00324.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Meyer E., Keller A. M. A Mendelian mutation affecting mating-type determination also affects developmental genomic rearrangements in Paramecium tetraurelia. Genetics. 1996 May;143(1):191–202. doi: 10.1093/genetics/143.1.191. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Prescott D. M. The DNA of ciliated protozoa. Microbiol Rev. 1994 Jun;58(2):233–267. doi: 10.1128/mr.58.2.233-267.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Russell C. B., Fraga D., Hinrichsen R. D. Extremely short 20-33 nucleotide introns are the standard length in Paramecium tetraurelia. Nucleic Acids Res. 1994 Apr 11;22(7):1221–1225. doi: 10.1093/nar/22.7.1221. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Salisbury J. L. Centrin, centrosomes, and mitotic spindle poles. Curr Opin Cell Biol. 1995 Feb;7(1):39–45. doi: 10.1016/0955-0674(95)80043-3. [DOI] [PubMed] [Google Scholar]
  18. Scott J., Leeck C., Forney J. Analysis of the micronuclear B type surface protein gene in Paramecium tetraurelia. Nucleic Acids Res. 1994 Nov 25;22(23):5079–5084. doi: 10.1093/nar/22.23.5079. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Sperling L., Keryer G., Ruiz F., Beisson J. Cortical morphogenesis in Paramecium: a transcellular wave of protein phosphorylation involved in ciliary rootlet disassembly. Dev Biol. 1991 Nov;148(1):205–218. doi: 10.1016/0012-1606(91)90330-6. [DOI] [PubMed] [Google Scholar]
  20. Steele C. J., Barkocy-Gallagher G. A., Preer L. B., Preer J. R., Jr Developmentally excised sequences in micronuclear DNA of Paramecium. Proc Natl Acad Sci U S A. 1994 Mar 15;91(6):2255–2259. doi: 10.1073/pnas.91.6.2255. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Tindall S. H., DeVito L. D., Nelson D. L. Biochemical characterization of the proteins of Paramecium secretory granules. J Cell Sci. 1989 Mar;92(Pt 3):441–447. doi: 10.1242/jcs.92.3.441. [DOI] [PubMed] [Google Scholar]
  22. Yao M. C. Programmed DNA deletions in Tetrahymena: mechanisms and implications. Trends Genet. 1996 Jan;12(1):26–30. doi: 10.1016/0168-9525(96)81385-0. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES