Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1997 Apr 15;25(8):1469–1475. doi: 10.1093/nar/25.8.1469

Cysteine-to-alanine replacements in the Escherichia coli SoxR protein and the role of the [2Fe-2S] centers in transcriptional activation.

T M Bradley 1, E Hidalgo 1, V Leautaud 1, H Ding 1, B Demple 1
PMCID: PMC146616  PMID: 9092651

Abstract

The Escherichia coli soxRS regulon activates oxidative stress and antibiotic resistance genes in two transcriptional stages. SoxR protein becomes activated in cells exposed to excess superoxide or nitric oxide and then stimulates transcription of the soxS gene, whose product in turn activates>/=10 regulon promoters. Purified SoxR protein is a homodimer containing a pair of [2Fe-2S] centers essential for soxS transcription in vitro . The [2Fe-2S] centers are thought to be anchored by a C-terminal cluster of four cysteine residues in SoxR. Here we analyze mutant SoxR derivatives with individual cysteines replaced by alanine residues (Cys-->Ala). The mutant proteins in cell-free extracts bound the soxS promoter with wild-type affinity, but upon purification lacked Fe or detectable transcriptional activity for soxS in vitro . Electron paramagnetic resonance measurements in vivo indicated that the Cys-->Ala proteins lacked the [2Fe-2S] centers seen for wild-type SoxR. The Cys-->Ala mutant proteins failed to activate soxS expression in vivo in response to paraquat, a superoxide- generating agent. However, when expressed to approximately 5% of the cell protein, the Cys-->Ala derivatives increased basal soxS transcription 2-4-fold. Overexpression of the Cys119-->Ala mutant protein strongly interfered with soxS activation by wild-type SoxR in response to paraquat. These studies demonstrate the essential role of the [2Fe-2S] centers for SoxR activation in vivo ; the data may also indicate oxidant-independent mechanisms of transcriptional activation by SoxR.

Full Text

The Full Text of this article is available as a PDF (138.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amábile-Cuevas C. F., Demple B. Molecular characterization of the soxRS genes of Escherichia coli: two genes control a superoxide stress regulon. Nucleic Acids Res. 1991 Aug 25;19(16):4479–4484. doi: 10.1093/nar/19.16.4479. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Ariza R. R., Cohen S. P., Bachhawat N., Levy S. B., Demple B. Repressor mutations in the marRAB operon that activate oxidative stress genes and multiple antibiotic resistance in Escherichia coli. J Bacteriol. 1994 Jan;176(1):143–148. doi: 10.1128/jb.176.1.143-148.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Ariza R. R., Li Z., Ringstad N., Demple B. Activation of multiple antibiotic resistance and binding of stress-inducible promoters by Escherichia coli Rob protein. J Bacteriol. 1995 Apr;177(7):1655–1661. doi: 10.1128/jb.177.7.1655-1661.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chou J. H., Greenberg J. T., Demple B. Posttranscriptional repression of Escherichia coli OmpF protein in response to redox stress: positive control of the micF antisense RNA by the soxRS locus. J Bacteriol. 1993 Feb;175(4):1026–1031. doi: 10.1128/jb.175.4.1026-1031.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Ding H., Demple B. Glutathione-mediated destabilization in vitro of [2Fe-2S] centers in the SoxR regulatory protein. Proc Natl Acad Sci U S A. 1996 Sep 3;93(18):9449–9453. doi: 10.1073/pnas.93.18.9449. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Ding H., Hidalgo E., Demple B. The redox state of the [2Fe-2S] clusters in SoxR protein regulates its activity as a transcription factor. J Biol Chem. 1996 Dec 27;271(52):33173–33175. doi: 10.1074/jbc.271.52.33173. [DOI] [PubMed] [Google Scholar]
  7. Gaudu P., Weiss B. SoxR, a [2Fe-2S] transcription factor, is active only in its oxidized form. Proc Natl Acad Sci U S A. 1996 Sep 17;93(19):10094–10098. doi: 10.1073/pnas.93.19.10094. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Greenberg J. T., Monach P., Chou J. H., Josephy P. D., Demple B. Positive control of a global antioxidant defense regulon activated by superoxide-generating agents in Escherichia coli. Proc Natl Acad Sci U S A. 1990 Aug;87(16):6181–6185. doi: 10.1073/pnas.87.16.6181. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hidalgo E., Bollinger J. M., Jr, Bradley T. M., Walsh C. T., Demple B. Binuclear [2Fe-2S] clusters in the Escherichia coli SoxR protein and role of the metal centers in transcription. J Biol Chem. 1995 Sep 8;270(36):20908–20914. doi: 10.1074/jbc.270.36.20908. [DOI] [PubMed] [Google Scholar]
  10. Hidalgo E., Demple B. Activation of SoxR-dependent transcription in vitro by noncatalytic or NifS-mediated assembly of [2Fe-2S] clusters into apo-SoxR. J Biol Chem. 1996 Mar 29;271(13):7269–7272. doi: 10.1074/jbc.271.13.7269. [DOI] [PubMed] [Google Scholar]
  11. Hidalgo E., Demple B. An iron-sulfur center essential for transcriptional activation by the redox-sensing SoxR protein. EMBO J. 1994 Jan 1;13(1):138–146. doi: 10.1002/j.1460-2075.1994.tb06243.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hidalgo E., Ding H., Demple B. Redox signal transduction: mutations shifting [2Fe-2S] centers of the SoxR sensor-regulator to the oxidized form. Cell. 1997 Jan 10;88(1):121–129. doi: 10.1016/s0092-8674(00)81864-4. [DOI] [PubMed] [Google Scholar]
  13. Jair K. W., Martin R. G., Rosner J. L., Fujita N., Ishihama A., Wolf R. E., Jr Purification and regulatory properties of MarA protein, a transcriptional activator of Escherichia coli multiple antibiotic and superoxide resistance promoters. J Bacteriol. 1995 Dec;177(24):7100–7104. doi: 10.1128/jb.177.24.7100-7104.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Jair K. W., Yu X., Skarstad K., Thöny B., Fujita N., Ishihama A., Wolf R. E., Jr Transcriptional activation of promoters of the superoxide and multiple antibiotic resistance regulons by Rob, a binding protein of the Escherichia coli origin of chromosomal replication. J Bacteriol. 1996 May;178(9):2507–2513. doi: 10.1128/jb.178.9.2507-2513.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  16. Li Z., Demple B. Sequence specificity for DNA binding by Escherichia coli SoxS and Rob proteins. Mol Microbiol. 1996 Jun;20(5):937–945. doi: 10.1111/j.1365-2958.1996.tb02535.x. [DOI] [PubMed] [Google Scholar]
  17. Ma D., Alberti M., Lynch C., Nikaido H., Hearst J. E. The local repressor AcrR plays a modulating role in the regulation of acrAB genes of Escherichia coli by global stress signals. Mol Microbiol. 1996 Jan;19(1):101–112. doi: 10.1046/j.1365-2958.1996.357881.x. [DOI] [PubMed] [Google Scholar]
  18. Nakajima H., Kobayashi M., Negishi T., Aono R. soxRS gene increased the level of organic solvent tolerance in Escherichia coli. Biosci Biotechnol Biochem. 1995 Jul;59(7):1323–1325. doi: 10.1271/bbb.59.1323. [DOI] [PubMed] [Google Scholar]
  19. Neilands J. B. Siderophores: structure and function of microbial iron transport compounds. J Biol Chem. 1995 Nov 10;270(45):26723–26726. doi: 10.1074/jbc.270.45.26723. [DOI] [PubMed] [Google Scholar]
  20. Nunoshiba T., DeRojas-Walker T., Tannenbaum S. R., Demple B. Roles of nitric oxide in inducible resistance of Escherichia coli to activated murine macrophages. Infect Immun. 1995 Mar;63(3):794–798. doi: 10.1128/iai.63.3.794-798.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Nunoshiba T., Demple B. Potent intracellular oxidative stress exerted by the carcinogen 4-nitroquinoline-N-oxide. Cancer Res. 1993 Jul 15;53(14):3250–3252. [PubMed] [Google Scholar]
  22. Nunoshiba T., Hidalgo E., Amábile Cuevas C. F., Demple B. Two-stage control of an oxidative stress regulon: the Escherichia coli SoxR protein triggers redox-inducible expression of the soxS regulatory gene. J Bacteriol. 1992 Oct;174(19):6054–6060. doi: 10.1128/jb.174.19.6054-6060.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Nunoshiba T., Hidalgo E., Li Z., Demple B. Negative autoregulation by the Escherichia coli SoxS protein: a dampening mechanism for the soxRS redox stress response. J Bacteriol. 1993 Nov;175(22):7492–7494. doi: 10.1128/jb.175.22.7492-7494.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Nunoshiba T., deRojas-Walker T., Wishnok J. S., Tannenbaum S. R., Demple B. Activation by nitric oxide of an oxidative-stress response that defends Escherichia coli against activated macrophages. Proc Natl Acad Sci U S A. 1993 Nov 1;90(21):9993–9997. doi: 10.1073/pnas.90.21.9993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Skarstad K., Thöny B., Hwang D. S., Kornberg A. A novel binding protein of the origin of the Escherichia coli chromosome. J Biol Chem. 1993 Mar 15;268(8):5365–5370. [PubMed] [Google Scholar]
  26. Tsaneva I. R., Weiss B. soxR, a locus governing a superoxide response regulon in Escherichia coli K-12. J Bacteriol. 1990 Aug;172(8):4197–4205. doi: 10.1128/jb.172.8.4197-4205.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Wu J., Dunham W. R., Weiss B. Overproduction and physical characterization of SoxR, a [2Fe-2S] protein that governs an oxidative response regulon in Escherichia coli. J Biol Chem. 1995 Apr 28;270(17):10323–10327. doi: 10.1074/jbc.270.17.10323. [DOI] [PubMed] [Google Scholar]
  28. Wu J., Weiss B. Two-stage induction of the soxRS (superoxide response) regulon of Escherichia coli. J Bacteriol. 1992 Jun;174(12):3915–3920. doi: 10.1128/jb.174.12.3915-3920.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES