Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1997 May 15;25(10):1897–1902. doi: 10.1093/nar/25.10.1897

Glyoxal, a major product of DNA oxidation, induces mutations at G:C sites on a shuttle vector plasmid replicated in mammalian cells.

N Murata-Kamiya 1, H Kamiya 1, H Kaji 1, H Kasai 1
PMCID: PMC146688  PMID: 9115355

Abstract

Glyoxal is a major product of DNA oxidation in which Fenton-type oxygen free radical-forming systems are involved. To determine the mutation spectrum of glyoxal in mammalian cells and to compare the spectrum with those observed in other experimental systems, we analyzed mutations in a bacterial suppressor tRNA gene (supF) in the shuttle vector plasmid pMY189. We treated pMY189 with glyoxal and immediately transfected it into simian COS-7 cells. The cytotoxicity and mutation frequency increased according to the dose of glyoxal. The majority of glyoxal-induced mutations (48%) were single-base substitutions. Eighty three percent of the single-base substitutions occurred at G:C base pairs. Among them, G:C-->T:A transversions were predominant, followed by G:C-->C:G transversions and G:C-->A:T transitions. A:T-->T:A transversions were also observed. Mutational hotspots within the supF gene were detected. These results suggest that glyoxal may play an important role in mutagenesis induced by oxygen free radicals.

Full Text

The Full Text of this article is available as a PDF (78.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akasaka S., Takimoto K., Yamamoto K. G:C-->T:A and G:C-->C:G transversions are the predominant spontaneous mutations in the Escherichia coli supF gene: an improved lacZ(am) E. coli host designed for assaying pZ189 supF mutational specificity. Mol Gen Genet. 1992 Nov;235(2-3):173–178. doi: 10.1007/BF00279358. [DOI] [PubMed] [Google Scholar]
  2. Akasaka S., Yamamoto K. Hydrogen peroxide induces G:C to T:A and G:C to C:G transversions in the supF gene of Escherichia coli. Mol Gen Genet. 1994 Jun 3;243(5):500–505. doi: 10.1007/BF00284197. [DOI] [PubMed] [Google Scholar]
  3. Akasaka S., Yamamoto K. Mutagenesis resulting from DNA damage by lipid peroxidation in the supF gene of Escherichia coli. Mutat Res. 1994 Sep;315(2):105–112. doi: 10.1016/0921-8777(94)90011-6. [DOI] [PubMed] [Google Scholar]
  4. Akasaka S., Yamamoto K. Mutational specificity of the ferrous ion in a supF gene of Escherichia coli. Biochem Biophys Res Commun. 1995 Aug 4;213(1):74–80. doi: 10.1006/bbrc.1995.2100. [DOI] [PubMed] [Google Scholar]
  5. Basu A. K., Loechler E. L., Leadon S. A., Essigmann J. M. Genetic effects of thymine glycol: site-specific mutagenesis and molecular modeling studies. Proc Natl Acad Sci U S A. 1989 Oct;86(20):7677–7681. doi: 10.1073/pnas.86.20.7677. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bjeldanes L. F., Chew H. Mutagenicity of 1,2-dicarbonyl compounds: maltol, kojic acid, diacetyl and related substances. Mutat Res. 1979 Aug;67(4):367–371. doi: 10.1016/0165-1218(79)90034-x. [DOI] [PubMed] [Google Scholar]
  7. Breen A. P., Murphy J. A. Reactions of oxyl radicals with DNA. Free Radic Biol Med. 1995 Jun;18(6):1033–1077. doi: 10.1016/0891-5849(94)00209-3. [DOI] [PubMed] [Google Scholar]
  8. Dorado L., Ruis Montoya M. R., Rodríguez Mellado J. M. A contribution to the study of the structure-mutagenicity relationship for alpha-dicarbonyl compounds using the Ames test. Mutat Res. 1992 Oct;269(2):301–306. doi: 10.1016/0027-5107(92)90212-k. [DOI] [PubMed] [Google Scholar]
  9. Feig D. I., Sowers L. C., Loeb L. A. Reverse chemical mutagenesis: identification of the mutagenic lesions resulting from reactive oxygen species-mediated damage to DNA. Proc Natl Acad Sci U S A. 1994 Jul 5;91(14):6609–6613. doi: 10.1073/pnas.91.14.6609. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Gentil A., Renault G., Madzak C., Margot A., Cabral-Neto J. B., Vasseur J. J., Rayner B., Imbach J. L., Sarasin A. Mutagenic properties of a unique abasic site in mammalian cells. Biochem Biophys Res Commun. 1990 Dec 14;173(2):704–710. doi: 10.1016/s0006-291x(05)80092-0. [DOI] [PubMed] [Google Scholar]
  11. Harman D. The aging process. Proc Natl Acad Sci U S A. 1981 Nov;78(11):7124–7128. doi: 10.1073/pnas.78.11.7124. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hauser J., Seidman M. M., Sidur K., Dixon K. Sequence specificity of point mutations induced during passage of a UV-irradiated shuttle vector plasmid in monkey cells. Mol Cell Biol. 1986 Jan;6(1):277–285. doi: 10.1128/mcb.6.1.277. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Ishizaki K., Nishizawa K., Mimaki S., Aizawa S. UV-induced mutations of supF gene on a shuttle vector plasmid in p53-deficient mouse cells are qualitatively different from those in wild-type cells. Mutat Res. 1996 Sep 2;364(1):43–49. doi: 10.1016/0921-8777(96)00020-1. [DOI] [PubMed] [Google Scholar]
  14. Kamiya H., Kasai H. Substitution and deletion mutations induced by 2-hydroxyadenine in Escherichia coli: effects of sequence contexts in leading and lagging strands. Nucleic Acids Res. 1997 Jan 15;25(2):304–311. doi: 10.1093/nar/25.2.304. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kamiya H., Murata-Kamiya N., Koizume S., Inoue H., Nishimura S., Ohtsuka E. 8-Hydroxyguanine (7,8-dihydro-8-oxoguanine) in hot spots of the c-Ha-ras gene: effects of sequence contexts on mutation spectra. Carcinogenesis. 1995 Apr;16(4):883–889. doi: 10.1093/carcin/16.4.883. [DOI] [PubMed] [Google Scholar]
  16. Kamiya H., Suzuki M., Komatsu Y., Miura H., Kikuchi K., Sakaguchi T., Murata N., Masutani C., Hanaoka F., Ohtsuka E. An abasic site analogue activates a c-Ha-ras gene by a point mutation at modified and adjacent positions. Nucleic Acids Res. 1992 Sep 11;20(17):4409–4415. doi: 10.1093/nar/20.17.4409. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kasai H., Hayami H., Yamaizumi Z., SaitôH, Nishimura S. Detection and identification of mutagens and carcinogens as their adducts with guanosine derivatives. Nucleic Acids Res. 1984 Feb 24;12(4):2127–2136. doi: 10.1093/nar/12.4.2127. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Kasai H., Kumeno K., Yamaizumi Z., Nishimura S., Nagao M., Fujita Y., Sugimura T., Nukaya H., Kosuge T. Mutagenicity of methylglyoxal in coffee. Gan. 1982 Oct;73(5):681–683. [PubMed] [Google Scholar]
  19. Kouchakdjian M., Marinelli E., Gao X. L., Johnson F., Grollman A., Patel D. NMR studies of exocyclic 1,N2-propanodeoxyguanosine adducts (X) opposite purines in DNA duplexes: protonated X(syn).A(anti) pairing (acidic pH) and X(syn).G(anti) pairing (neutral pH) at the lesion site. Biochemistry. 1989 Jun 27;28(13):5647–5657. doi: 10.1021/bi00439a047. [DOI] [PubMed] [Google Scholar]
  20. Kraemer K. H., Seidman M. M. Use of supF, an Escherichia coli tyrosine suppressor tRNA gene, as a mutagenic target in shuttle-vector plasmids. Mutat Res. 1989 Mar-May;220(2-3):61–72. doi: 10.1016/0165-1110(89)90011-0. [DOI] [PubMed] [Google Scholar]
  21. Loeb L. A., James E. A., Waltersdorph A. M., Klebanoff S. J. Mutagenesis by the autoxidation of iron with isolated DNA. Proc Natl Acad Sci U S A. 1988 Jun;85(11):3918–3922. doi: 10.1073/pnas.85.11.3918. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Matsuda T., Yagi T., Kawanishi M., Matsui S., Takebe H. Molecular analysis of mutations induced by 2-chloroacetaldehyde, the ultimate carcinogenic form of vinyl chloride, in human cells using shuttle vectors. Carcinogenesis. 1995 Oct;16(10):2389–2394. doi: 10.1093/carcin/16.10.2389. [DOI] [PubMed] [Google Scholar]
  23. McBride T. J., Preston B. D., Loeb L. A. Mutagenic spectrum resulting from DNA damage by oxygen radicals. Biochemistry. 1991 Jan 8;30(1):207–213. doi: 10.1021/bi00215a030. [DOI] [PubMed] [Google Scholar]
  24. McBride T. J., Schneider J. E., Floyd R. A., Loeb L. A. Mutations induced by methylene blue plus light in single-stranded M13mp2. Proc Natl Acad Sci U S A. 1992 Aug 1;89(15):6866–6870. doi: 10.1073/pnas.89.15.6866. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Moraes E. C., Keyse S. M., Tyrrell R. M. Mutagenesis by hydrogen peroxide treatment of mammalian cells: a molecular analysis. Carcinogenesis. 1990 Feb;11(2):283–293. doi: 10.1093/carcin/11.2.283. [DOI] [PubMed] [Google Scholar]
  26. Moriya M. Single-stranded shuttle phagemid for mutagenesis studies in mammalian cells: 8-oxoguanine in DNA induces targeted G.C-->T.A transversions in simian kidney cells. Proc Natl Acad Sci U S A. 1993 Feb 1;90(3):1122–1126. doi: 10.1073/pnas.90.3.1122. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Moriya M., Zhang W., Johnson F., Grollman A. P. Mutagenic potency of exocyclic DNA adducts: marked differences between Escherichia coli and simian kidney cells. Proc Natl Acad Sci U S A. 1994 Dec 6;91(25):11899–11903. doi: 10.1073/pnas.91.25.11899. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Murata-Kamiya N., Kamiya H., Iwamoto N., Kasai H. Formation of a mutagen, glyoxal, from DNA treated with oxygen free radicals. Carcinogenesis. 1995 Sep;16(9):2251–2253. doi: 10.1093/carcin/16.9.2251. [DOI] [PubMed] [Google Scholar]
  29. Nishiyama T., Hagiwara Y., Hagiwara H., Shibamoto T. Inhibitory effect of 2"-O-glycosyl isovitexin and alpha-tocopherol on genotoxic glyoxal formation in a lipid peroxidation system. Food Chem Toxicol. 1994 Nov;32(11):1047–1051. doi: 10.1016/0278-6915(94)90145-7. [DOI] [PubMed] [Google Scholar]
  30. Rich A., RajBhandary U. L. Transfer RNA: molecular structure, sequence, and properties. Annu Rev Biochem. 1976;45:805–860. doi: 10.1146/annurev.bi.45.070176.004105. [DOI] [PubMed] [Google Scholar]
  31. Sayato Y., Nakamuro K., Ueno H. Mutagenicity of products formed by ozonation of naphthoresorcinol in aqueous solutions. Mutat Res. 1987 Nov;189(3):217–222. doi: 10.1016/0165-1218(87)90055-3. [DOI] [PubMed] [Google Scholar]
  32. Schaaper R. M., Kunkel T. A., Loeb L. A. Infidelity of DNA synthesis associated with bypass of apurinic sites. Proc Natl Acad Sci U S A. 1983 Jan;80(2):487–491. doi: 10.1073/pnas.80.2.487. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Seidman M. M., Dixon K., Razzaque A., Zagursky R. J., Berman M. L. A shuttle vector plasmid for studying carcinogen-induced point mutations in mammalian cells. Gene. 1985;38(1-3):233–237. doi: 10.1016/0378-1119(85)90222-7. [DOI] [PubMed] [Google Scholar]
  34. Shapiro R., Hachmann J. The reaction of guanine derivatives with 1,2-dicarbonyl compounds. Biochemistry. 1966 Sep;5(9):2799–2807. doi: 10.1021/bi00873a004. [DOI] [PubMed] [Google Scholar]
  35. Stary A., Sarasin A. Simian virus 40 (SV40) large T antigen-dependent amplification of an Epstein-Barr virus-SV40 hybrid shuttle vector integrated into the human HeLa cell genome. J Gen Virol. 1992 Jul;73(Pt 7):1679–1685. doi: 10.1099/0022-1317-73-7-1679. [DOI] [PubMed] [Google Scholar]
  36. Tudek B., Laval J., Boiteux S. SOS-independent mutagenesis in lacZ induced by methylene blue plus visible light. Mol Gen Genet. 1993 Jan;236(2-3):433–439. doi: 10.1007/BF00277144. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES