Skip to main content
Journal of Anatomy logoLink to Journal of Anatomy
. 1998 Jan;192(Pt 1):119–130. doi: 10.1046/j.1469-7580.1998.19210119.x

Nucleation and capture of large cell surface-associated microtubule arrays that are not located near centrosomes in certain cochlear epithelial cells

JOHN B TUCKER 1 ,, METTE M MOGENSEN 1 ,5 , CRAIG G HENDERSON 1 , STEPHEN J DOXSEY 2 , MICHEL WRIGHT 3 , TIM STEARNS 4
PMCID: PMC1467745  PMID: 9568567

Abstract

This report deals with the as yet undetermined issue of whether cell-surface associated microtubules in certain cochlear epithelial cells are centrosomally nucleated and subsequently migrate to microtubule-capturing sites located at the surface regions in question. Alternatively, the cells may possess additional nucleating sites which are noncentrosomal and surface-associated. These alternative possibilities have been investigated for highly polarised epithelial cells called supporting cells in the mouse and guinea pig organ of Corti using antibodies to pericentrin and γ-tubulin. There is substantial evidence that both proteins are essential components of microtubule-nucleating sites in cells generally. Each mature supporting cell possesses a large microtubule array that is remotely located with respect to its centrosome (more than 10 μm away). The antibodies bind to a cell's centrosome. No binding has been detected at 2 other microtubule-organising centres that are associated with the ends of the centrosomally-remote microtubule array while it is being constructed. Such arrays include thousands of microtubules in some of the cell types that have been examined. If all a cell's microtubules are nucleated by its centrosome then the findings reported above imply that microtubules escape from the centrosomal nucleating site and migrate to a new location. Furthermore, capture of the plus and minus ends of the errant microtubules is taking place because both ends of a centrosomally-remote microtubule array are attached to sites that are precisely positioned at certain cell surface locations. Minus ends are locating targets with an exactitude comparable to that which has been demonstrated for plus ends in certain cell types. These cells apparently operate a single control centre strategy for microtubule nucleation that is complemented by precise positioning of plus and minus end-capturing sites at the cell surface.

Keywords: Organ of Corti, cytoskeleton, centriole, γ-tubulin, pericentrin

Full Text

The Full Text of this article is available as a PDF (865.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ahmad F. J., Baas P. W. Microtubules released from the neuronal centrosome are transported into the axon. J Cell Sci. 1995 Aug;108(Pt 8):2761–2769. doi: 10.1242/jcs.108.8.2761. [DOI] [PubMed] [Google Scholar]
  2. Bacallao R., Antony C., Dotti C., Karsenti E., Stelzer E. H., Simons K. The subcellular organization of Madin-Darby canine kidney cells during the formation of a polarized epithelium. J Cell Biol. 1989 Dec;109(6 Pt 1):2817–2832. doi: 10.1083/jcb.109.6.2817. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Belmont L. D., Hyman A. A., Sawin K. E., Mitchison T. J. Real-time visualization of cell cycle-dependent changes in microtubule dynamics in cytoplasmic extracts. Cell. 1990 Aug 10;62(3):579–589. doi: 10.1016/0092-8674(90)90022-7. [DOI] [PubMed] [Google Scholar]
  4. Brinkley B. R. Microtubule organizing centers. Annu Rev Cell Biol. 1985;1:145–172. doi: 10.1146/annurev.cb.01.110185.001045. [DOI] [PubMed] [Google Scholar]
  5. Debec A., Détraves C., Montmory C., Géraud G., Wright M. Polar organization of gamma-tubulin in acentriolar mitotic spindles of Drosophila melanogaster cells. J Cell Sci. 1995 Jul;108(Pt 7):2645–2653. doi: 10.1242/jcs.108.7.2645. [DOI] [PubMed] [Google Scholar]
  6. Doxsey S. J., Stein P., Evans L., Calarco P. D., Kirschner M. Pericentrin, a highly conserved centrosome protein involved in microtubule organization. Cell. 1994 Feb 25;76(4):639–650. doi: 10.1016/0092-8674(94)90504-5. [DOI] [PubMed] [Google Scholar]
  7. Gelfand V. I., Bershadsky A. D. Microtubule dynamics: mechanism, regulation, and function. Annu Rev Cell Biol. 1991;7:93–116. doi: 10.1146/annurev.cb.07.110191.000521. [DOI] [PubMed] [Google Scholar]
  8. Gueth-Hallonet C., Antony C., Aghion J., Santa-Maria A., Lajoie-Mazenc I., Wright M., Maro B. gamma-Tubulin is present in acentriolar MTOCs during early mouse development. J Cell Sci. 1993 May;105(Pt 1):157–166. doi: 10.1242/jcs.105.1.157. [DOI] [PubMed] [Google Scholar]
  9. Henderson C. G., Tucker J. B., Chaplin M. A., Mackie J. B., Maidment S. N., Mogensen M. M., Paton C. C. Reorganization of the centrosome and associated microtubules during the morphogenesis of a mouse cochlear epithelial cell. J Cell Sci. 1994 Feb;107(Pt 2):589–600. [PubMed] [Google Scholar]
  10. Henderson C. G., Tucker J. B., Mogensen M. M., Mackie J. B., Chaplin M. A., Slepecky N. B., Leckie L. M. Three microtubule-organizing centres collaborate in a mouse cochlear epithelial cell during supracellularly coordinated control of microtubule positioning. J Cell Sci. 1995 Jan;108(Pt 1):37–50. doi: 10.1242/jcs.108.1.37. [DOI] [PubMed] [Google Scholar]
  11. Holley M. C., Ashmore J. F. Spectrin, actin and the structure of the cortical lattice in mammalian cochlear outer hair cells. J Cell Sci. 1990 Jun;96(Pt 2):283–291. doi: 10.1242/jcs.96.2.283. [DOI] [PubMed] [Google Scholar]
  12. Horio T., Oakley B. R. Human gamma-tubulin functions in fission yeast. J Cell Biol. 1994 Sep;126(6):1465–1473. doi: 10.1083/jcb.126.6.1465. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Joshi H. C., Baas P. W. A new perspective on microtubules and axon growth. J Cell Biol. 1993 Jun;121(6):1191–1196. doi: 10.1083/jcb.121.6.1191. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Joshi H. C. Microtubule organizing centers and gamma-tubulin. Curr Opin Cell Biol. 1994 Feb;6(1):54–62. doi: 10.1016/0955-0674(94)90116-3. [DOI] [PubMed] [Google Scholar]
  15. Kalt A., Schliwa M. Molecular components of the centrosome. Trends Cell Biol. 1993 Apr;3(4):118–128. doi: 10.1016/0962-8924(93)90174-y. [DOI] [PubMed] [Google Scholar]
  16. Keating T. J., Peloquin J. G., Rodionov V. I., Momcilovic D., Borisy G. G. Microtubule release from the centrosome. Proc Natl Acad Sci U S A. 1997 May 13;94(10):5078–5083. doi: 10.1073/pnas.94.10.5078. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kellogg D. R., Moritz M., Alberts B. M. The centrosome and cellular organization. Annu Rev Biochem. 1994;63:639–674. doi: 10.1146/annurev.bi.63.070194.003231. [DOI] [PubMed] [Google Scholar]
  18. Kimble M., Kuriyama R. Functional components of microtubule-organizing centers. Int Rev Cytol. 1992;136:1–50. doi: 10.1016/s0074-7696(08)62049-5. [DOI] [PubMed] [Google Scholar]
  19. Kirschner M., Schulze E. Morphogenesis and the control of microtubule dynamics in cells. J Cell Sci Suppl. 1986;5:293–310. doi: 10.1242/jcs.1986.supplement_5.19. [DOI] [PubMed] [Google Scholar]
  20. Lajoie-Mazenc I., Tollon Y., Detraves C., Julian M., Moisand A., Gueth-Hallonet C., Debec A., Salles-Passador I., Puget A., Mazarguil H. Recruitment of antigenic gamma-tubulin during mitosis in animal cells: presence of gamma-tubulin in the mitotic spindle. J Cell Sci. 1994 Oct;107(Pt 10):2825–2837. doi: 10.1242/jcs.107.10.2825. [DOI] [PubMed] [Google Scholar]
  21. Lim D. J. Functional structure of the organ of Corti: a review. Hear Res. 1986;22:117–146. doi: 10.1016/0378-5955(86)90089-4. [DOI] [PubMed] [Google Scholar]
  22. Liu B., Marc J., Joshi H. C., Palevitz B. A. A gamma-tubulin-related protein associated with the microtubule arrays of higher plants in a cell cycle-dependent manner. J Cell Sci. 1993 Apr;104(Pt 4):1217–1228. doi: 10.1242/jcs.104.4.1217. [DOI] [PubMed] [Google Scholar]
  23. McBeath E., Fujiwara K. Microtubule detachment from the microtubule-organizing center as a key event in the complete turnover of microtubules in cells. Eur J Cell Biol. 1990 Jun;52(1):1–16. [PubMed] [Google Scholar]
  24. Meads T., Schroer T. A. Polarity and nucleation of microtubules in polarized epithelial cells. Cell Motil Cytoskeleton. 1995;32(4):273–288. doi: 10.1002/cm.970320404. [DOI] [PubMed] [Google Scholar]
  25. Mogensen M. M., Mackie J. B., Doxsey S. J., Stearns T., Tucker J. B. Centrosomal deployment of gamma-tubulin and pericentrin: evidence for a microtubule-nucleating domain and a minus-end docking domain in certain mouse epithelial cells. Cell Motil Cytoskeleton. 1997;36(3):276–290. doi: 10.1002/(SICI)1097-0169(1997)36:3<276::AID-CM8>3.0.CO;2-5. [DOI] [PubMed] [Google Scholar]
  26. Mogensen M. M., Tucker J. B., Stebbings H. Microtubule polarities indicate that nucleation and capture of microtubules occurs at cell surfaces in Drosophila. J Cell Biol. 1989 Apr;108(4):1445–1452. doi: 10.1083/jcb.108.4.1445. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Moritz M., Braunfeld M. B., Sedat J. W., Alberts B., Agard D. A. Microtubule nucleation by gamma-tubulin-containing rings in the centrosome. Nature. 1995 Dec 7;378(6557):638–640. doi: 10.1038/378638a0. [DOI] [PubMed] [Google Scholar]
  28. Oakley B. R. Cell biology. A nice ring to the centrosome. Nature. 1995 Dec 7;378(6557):555–556. doi: 10.1038/378555a0. [DOI] [PubMed] [Google Scholar]
  29. Rodionov V. I., Borisy G. G. Microtubule treadmilling in vivo. Science. 1997 Jan 10;275(5297):215–218. doi: 10.1126/science.275.5297.215. [DOI] [PubMed] [Google Scholar]
  30. Slepecky N. B., Savage J. E. Expression of actin isoforms in the guinea pig organ of Corti: muscle isoforms are not detected. Hear Res. 1994 Feb;73(1):16–26. doi: 10.1016/0378-5955(94)90278-x. [DOI] [PubMed] [Google Scholar]
  31. Stearns T., Evans L., Kirschner M. Gamma-tubulin is a highly conserved component of the centrosome. Cell. 1991 May 31;65(5):825–836. doi: 10.1016/0092-8674(91)90390-k. [DOI] [PubMed] [Google Scholar]
  32. Stearns T., Kirschner M. In vitro reconstitution of centrosome assembly and function: the central role of gamma-tubulin. Cell. 1994 Feb 25;76(4):623–637. doi: 10.1016/0092-8674(94)90503-7. [DOI] [PubMed] [Google Scholar]
  33. Troutt L. L., Burnside B. The unusual microtubule polarity in teleost retinal pigment epithelial cells. J Cell Biol. 1988 Oct;107(4):1461–1464. doi: 10.1083/jcb.107.4.1461. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Tucker J. B., Mogensen M. M., Paton C. C., Mackie J. B., Henderson C. G., Leckie L. M. Formation of two microtubule-nucleating sites which perform differently during centrosomal reorganization in a mouse cochlear epithelial cell. J Cell Sci. 1995 Apr;108(Pt 4):1333–1345. doi: 10.1242/jcs.108.4.1333. [DOI] [PubMed] [Google Scholar]
  35. Tucker J. B., Paton C. C., Henderson C. G., Mogensen M. M. Microtubule rearrangement and bending during assembly of large curved microtubule bundles in mouse cochlear epithelial cells. Cell Motil Cytoskeleton. 1993;25(1):49–58. doi: 10.1002/cm.970250107. [DOI] [PubMed] [Google Scholar]
  36. Tucker J. B., Paton C. C., Richardson G. P., Mogensen M. M., Russell I. J. A cell surface-associated centrosomal layer of microtubule-organizing material in the inner pillar cell of the mouse cochlea. J Cell Sci. 1992 Jun;102(Pt 2):215–226. doi: 10.1242/jcs.102.2.215. [DOI] [PubMed] [Google Scholar]
  37. Vogl A. W., Weis M., Pfeiffer D. C. The perinuclear centriole-containing centrosome is not the major microtubule organizing center in Sertoli cells. Eur J Cell Biol. 1995 Feb;66(2):165–179. [PubMed] [Google Scholar]
  38. Vorobjev I. A., Chentsov Y. S. The dynamics of reconstitution of microtubules around the cell center after cooling. Eur J Cell Biol. 1983 May;30(2):149–153. [PubMed] [Google Scholar]
  39. Zheng Y., Wong M. L., Alberts B., Mitchison T. Nucleation of microtubule assembly by a gamma-tubulin-containing ring complex. Nature. 1995 Dec 7;378(6557):578–583. doi: 10.1038/378578a0. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Anatomy are provided here courtesy of Anatomical Society of Great Britain and Ireland

RESOURCES