Skip to main content
Journal of Anatomy logoLink to Journal of Anatomy
. 1998 Feb;192(Pt 2):245–256. doi: 10.1046/j.1469-7580.1998.19220245.x

Mineralisation density of human mandibular bone: quantitative backscattered electron image analysis

V J KINGSMILL 1,, A BOYDE 1,
PMCID: PMC1467758  PMID: 9643425

Abstract

This study examined the tissue level mineralisation density distribution in mandibles from 88 adult humans. Mandibles (19–96 y) were sectioned vertically in midline (MID), mental foramen (MF), and third molar (M3) regions. Surgical fragments from M3 were obtained from individuals aged 16–38 y. All specimens were cleaned, embedded in PMMA, micromilled and examined by digital 20 kV backscattered electron (BSE) stereology. Quantitation was based on rescaling image histograms to the signal range between a monobrominated (0) and a monoiodinated (255) dimethacrylate resin standard. Mineralisation density increased with age (r=0.70; P<0.0001): the mean for 39 individuals aged between 16 and 50 y was significantly lower (P<0.0001) than for 35 individuals over 51 y (mean (± S.E.M.): 158.20 (1.63) and 174.71 (1.27) normalised grey level units respectively). There was good correlation in mean mineralisation density between different sites in the same mandible, but MID was significantly less highly mineralised than the other sites: MID 173.90, MF 177.34, M3 177.11 (P<0.002 and 0.01 for MF and M3 respectively; paired t test), as was the alveolar bone density when compared with the bone of the inferior cortex (e.g. MID: 171.13 (1.53) and 174.46 (1.14) P<0.0001). No sex difference was found. Partially dentate mandibles generally had regions of higher mineralisation than fully dentate and edentulous mandibles. The lowest density bone occurred at the alveolar crest anteriorly and superolingually at M3, matching sites of net resorption following tooth loss. Highest densities were found inferolingually at MID, inferiorly at MF and buccally at M3, matching the sites thought to experience the highest functional strains. This stresses the importance that local factors may have in the remodelling of the edentulous mandible. Morphology showed that there is a preponderance of highly mineralised cement lines, and of packets containing dead, mineralised, osteocytes.

Keywords: Osteoporosis, bone tissue density fractionation, ageing, osteocyte cell death

Full Text

The Full Text of this article is available as a PDF (863.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Atkinson P. J., Woodhead C. Changes in human mandibular structure with age. Arch Oral Biol. 1968 Dec;13(12):1453–1464. doi: 10.1016/0003-9969(68)90027-7. [DOI] [PubMed] [Google Scholar]
  2. Boyde A., Elliott J. C., Jones S. J. Stereology and histogram analysis of backscattered electron images: age changes in bone. Bone. 1993 May-Jun;14(3):205–210. doi: 10.1016/8756-3282(93)90142-w. [DOI] [PubMed] [Google Scholar]
  3. Boyde A., Jones S. J., Aerssens J., Dequeker J. Mineral density quantitation of the human cortical iliac crest by backscattered electron image analysis: variations with age, sex, and degree of osteoarthritis. Bone. 1995 Jun;16(6):619–627. doi: 10.1016/8756-3282(95)00119-x. [DOI] [PubMed] [Google Scholar]
  4. Boyde A., Jones S. J. Scanning electron microscopy of bone: instrument, specimen, and issues. Microsc Res Tech. 1996 Feb 1;33(2):92–120. doi: 10.1002/(SICI)1097-0029(19960201)33:2<92::AID-JEMT2>3.0.CO;2-0. [DOI] [PubMed] [Google Scholar]
  5. Currey J. D. The mechanical consequences of variation in the mineral content of bone. J Biomech. 1969 Mar;2(1):1–11. doi: 10.1016/0021-9290(69)90036-0. [DOI] [PubMed] [Google Scholar]
  6. Daegling D. J., Ravosa M. J., Johnson K. R., Hylander W. L. Influence of teeth, alveoli, and periodontal ligaments on torsional rigidity in human mandibles. Am J Phys Anthropol. 1992 Sep;89(1):59–72. doi: 10.1002/ajpa.1330890106. [DOI] [PubMed] [Google Scholar]
  7. Grynpas M. D., Patterson-Allen P., Simmons D. J. The changes in quality of mandibular bone mineral in otherwise totally immobilized rhesus monkeys. Calcif Tissue Int. 1986 Aug;39(2):57–62. doi: 10.1007/BF02553291. [DOI] [PubMed] [Google Scholar]
  8. Helkimo E., Carlsson G. E., Helkimo M. Bite force and state of dentition. Acta Odontol Scand. 1977;35(6):297–303. doi: 10.3109/00016357709064128. [DOI] [PubMed] [Google Scholar]
  9. Howell P. G., Boyde A. Monte Carlo simulations of electron scattering in bone. Bone. 1994 May-Jun;15(3):285–291. doi: 10.1016/8756-3282(94)90290-9. [DOI] [PubMed] [Google Scholar]
  10. Jäger A., Radlanski R. J., Taufall D., Klein C., Steinhöfel N., Döler W. Quantitative determination of alveolar bone density using digital image analysis of microradiographs. Anat Anz. 1990;170(3-4):171–179. [PubMed] [Google Scholar]
  11. Kingsmill V. J., Boyde A. Variation in the apparent density of human mandibular bone with age and dental status. J Anat. 1998 Feb;192(Pt 2):233–244. doi: 10.1046/j.1469-7580.1998.19220233.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Klemetti E., Kolmakov S., Heiskanen P., Vainio P., Lassila V. Panoramic mandibular index and bone mineral densities in postmenopausal women. Oral Surg Oral Med Oral Pathol. 1993 Jun;75(6):774–779. doi: 10.1016/0030-4220(93)90438-a. [DOI] [PubMed] [Google Scholar]
  13. Klemetti E., Vainio P., Lassila V. Mineral density in the mandibles of partially and totally edentate postmenopausal women. Scand J Dent Res. 1994 Feb;102(1):64–67. doi: 10.1111/j.1600-0722.1994.tb01155.x. [DOI] [PubMed] [Google Scholar]
  14. Korioth T. W., Romilly D. P., Hannam A. G. Three-dimensional finite element stress analysis of the dentate human mandible. Am J Phys Anthropol. 1992 May;88(1):69–96. doi: 10.1002/ajpa.1330880107. [DOI] [PubMed] [Google Scholar]
  15. Landini G. Videodensitometrical study of the alveolar bone crest in periodontal disease. J Periodontol. 1991 Aug;62(8):528–534. doi: 10.1902/jop.1991.62.8.528. [DOI] [PubMed] [Google Scholar]
  16. Pudwill M. L., Wentz F. M. Microscopic anatomy of edentulous residual alveolar ridges. J Prosthet Dent. 1975 Oct;34(4):448–455. doi: 10.1016/0022-3913(75)90165-1. [DOI] [PubMed] [Google Scholar]
  17. Richelle L. J. One possible solution to the problem of the biochemistry of bone mineral. Clin Orthop Relat Res. 1964 Mar-Apr;33:211–219. [PubMed] [Google Scholar]
  18. von Wowern N., Stoltze K. Pattern of age related bone loss in mandibles. Scand J Dent Res. 1980 Apr;88(2):134–146. doi: 10.1111/j.1600-0722.1980.tb01205.x. [DOI] [PubMed] [Google Scholar]
  19. von Wowern N. Variations in bone mass within the cortices of the mandible. Scand J Dent Res. 1977 Sep;85(6):444–455. doi: 10.1111/j.1600-0722.1977.tb00578.x. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Anatomy are provided here courtesy of Anatomical Society of Great Britain and Ireland

RESOURCES