Abstract
Immunohistochemistry of normal eccrine sweat glands was performed on paraffin sections of human skin. Immunoreactivity (ir) for neuron specific enolase, S100 protein (S100), regulatory peptides, nitric oxide synthase type I (NOS-I) and choline-acetyltransferase (ChAT) was found in small nerve bundles close to sweat glands. In the glands, secretory cells were labelled with anticytokeratin antibody. Using antibodies to S100, calcitonin gene-related peptide (CGRP) and substance P (SP) a specific distribution pattern was found in secretory cells. Granulated (dark) and parietal (clear) cells were immunopositive for CGRP, and S100 and SP, respectively. Immunoreactivity was diffuse in the cytoplasm for CGRP and S100, and peripheral for SP. Myoepithelial cells were not labelled. Electron microscopy revealed electron dense granules, probably containing peptide, in granulated cells. Using antibodies to NOS-I and ChAT, ir was exclusively found in myoepithelial cells. Immunoreactivity for the atrial natriuretic peptide was absent in sweat glands. These results provide evidence for the presence of both regulatory peptides involved in vasodilation and key enzymes for the synthesis of nitric oxide and acetylcholine in the secretory coil of human sweat glands. It is suggested that human sweat glands are capable of some intrinsic regulation in addition to that carried out by their nerve supply.
Keywords: Neuropeptides, nitric oxide synthase, choline-acetyltransferase, substance P, calcitonin gene-related peptide
Full Text
The Full Text of this article is available as a PDF (1.3 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Abdel-Rahman T. A., Collins K. J., Cowen T., Rustin M. Immunohistochemical, morphological and functional changes in the peripheral sudomotor neuro-effector system in elderly people. J Auton Nerv Syst. 1992 Mar;37(3):187–197. doi: 10.1016/0165-1838(92)90040-n. [DOI] [PubMed] [Google Scholar]
- Anderson C. R., McAllen R. M., Edwards S. L. Nitric oxide synthase and chemical coding in cat sympathetic postganglionic neurons. Neuroscience. 1995 Sep;68(1):255–264. doi: 10.1016/0306-4522(95)00143-7. [DOI] [PubMed] [Google Scholar]
- Barthó L., Lembeck F., Holzer P. Calcitonin gene-related peptide is a potent relaxant of intestinal muscle. Eur J Pharmacol. 1987 Mar 31;135(3):449–451. doi: 10.1016/0014-2999(87)90699-6. [DOI] [PubMed] [Google Scholar]
- Brain S. D., Tippins J. R., Morris H. R., MacIntyre I., Williams T. J. Potent vasodilator activity of calcitonin gene-related peptide in human skin. J Invest Dermatol. 1986 Oct;87(4):533–536. doi: 10.1111/1523-1747.ep12455620. [DOI] [PubMed] [Google Scholar]
- Bruch-Gerharz D., Ruzicka T., Kolb-Bachofen V. Nitric oxide in human skin: current status and future prospects. J Invest Dermatol. 1998 Jan;110(1):1–7. doi: 10.1046/j.1523-1747.1998.00084.x. [DOI] [PubMed] [Google Scholar]
- Bull H. A., Hothersall J., Chowdhury N., Cohen J., Dowd P. M. Neuropeptides induce release of nitric oxide from human dermal microvascular endothelial cells. J Invest Dermatol. 1996 Apr;106(4):655–660. doi: 10.1111/1523-1747.ep12345471. [DOI] [PubMed] [Google Scholar]
- Eedy D. J., Shaw C., Johnston C. F., Buchanan K. D. The regional distribution of neuropeptides in human skin as assessed by radioimmunoassay and high-performance liquid chromatography. Clin Exp Dermatol. 1994 Nov;19(6):463–472. doi: 10.1111/j.1365-2230.1994.tb01248.x. [DOI] [PubMed] [Google Scholar]
- Gauweiler B., Weihe E., Hartschuh W., Yanaihara N. Presence and coexistence of chromogranin A and multiple neuropeptides in Merkel cells of mammalian oral mucosa. Neurosci Lett. 1988 Jun 29;89(2):121–126. doi: 10.1016/0304-3940(88)90367-9. [DOI] [PubMed] [Google Scholar]
- Graf A. H., Hütter W., Hacker G. W., Steiner H., Anderson V., Staudach A., Dietze O. Localization and distribution of vasoactive neuropeptides in the human placenta. Placenta. 1996 Sep;17(7):413–421. doi: 10.1016/s0143-4004(96)90023-5. [DOI] [PubMed] [Google Scholar]
- Grube D. The endocrine cells of the digestive system: amines, peptides, and modes of action. Anat Embryol (Berl) 1986;175(2):151–162. doi: 10.1007/BF00389591. [DOI] [PubMed] [Google Scholar]
- Haimoto H., Hosoda S., Kato K. Differential distribution of immunoreactive S100-alpha and S100-beta proteins in normal nonnervous human tissues. Lab Invest. 1987 Nov;57(5):489–498. [PubMed] [Google Scholar]
- Hamann M., Chamoin M. C., Portalier P., Bernheim L., Baroffio A., Widmer H., Bader C. R., Ternaux J. P. Synthesis and release of an acetylcholine-like compound by human myoblasts and myotubes. J Physiol. 1995 Dec 15;489(Pt 3):791–803. doi: 10.1113/jphysiol.1995.sp021092. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ibáez C. F., Pelto-Huikko M., Söder O., Ritzèn E. M., Hersh L. B., Hökfelt T., Persson H. Expression of choline acetyltransferase mRNA in spermatogenic cells results in an accumulation of the enzyme in the postacrosomal region of mature spermatozoa. Proc Natl Acad Sci U S A. 1991 May 1;88(9):3676–3680. doi: 10.1073/pnas.88.9.3676. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ishida-Yamamoto A., Tohyama M. Calcitonin gene-related peptide-like immunoreactive cells in the secretory portions of rat sweat glands. Cell Tissue Res. 1990 May;260(3):621–623. doi: 10.1007/BF00297243. [DOI] [PubMed] [Google Scholar]
- Karanth S. S., Springall D. R., Kuhn D. M., Levene M. M., Polak J. M. An immunocytochemical study of cutaneous innervation and the distribution of neuropeptides and protein gene product 9.5 in man and commonly employed laboratory animals. Am J Anat. 1991 Aug;191(4):369–383. doi: 10.1002/aja.1001910404. [DOI] [PubMed] [Google Scholar]
- Kennedy W. R., Wendelschafer-Crabb G., Brelje T. C. Innervation and vasculature of human sweat glands: an immunohistochemistry-laser scanning confocal fluorescence microscopy study. J Neurosci. 1994 Nov;14(11 Pt 2):6825–6833. doi: 10.1523/JNEUROSCI.14-11-06825.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kurosumi K., Shibasaki S., Ito T. Cytology of the secretion in mammalian sweat glands. Int Rev Cytol. 1984;87:253–329. doi: 10.1016/s0074-7696(08)62445-6. [DOI] [PubMed] [Google Scholar]
- Leblanc G., Landis S. Development of choline acetyltransferase (CAT) in the sympathetic innervation of rat sweat glands. J Neurosci. 1986 Jan;6(1):260–265. doi: 10.1523/JNEUROSCI.06-01-00260.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Oda Y., Yamashita N., Muroishi Y., Nakanishi I. Localization of choline acetyltransferase and acetylcholine in the chorion of early human pregnancy. Histochem Cell Biol. 1996 Feb;105(2):93–99. doi: 10.1007/BF01696148. [DOI] [PubMed] [Google Scholar]
- Palmer R. M., Ferrige A. G., Moncada S. Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature. 1987 Jun 11;327(6122):524–526. doi: 10.1038/327524a0. [DOI] [PubMed] [Google Scholar]
- Pernow B. Substance P. Pharmacol Rev. 1983 Jun;35(2):85–141. [PubMed] [Google Scholar]
- Sato K., Kang W. H., Saga K., Sato K. T. Biology of sweat glands and their disorders. I. Normal sweat gland function. J Am Acad Dermatol. 1989 Apr;20(4):537–563. doi: 10.1016/s0190-9622(89)70063-3. [DOI] [PubMed] [Google Scholar]
- Sato K., Nishiyama A., Kobayashi M. Mechanical properties and functions of the myoepithelium in the eccrine sweat gland. Am J Physiol. 1979 Sep;237(3):C177–C184. doi: 10.1152/ajpcell.1979.237.3.C177. [DOI] [PubMed] [Google Scholar]
- Sbarbati A., Osculati A., Morroni M., Carboni V., Cinti S. Electron spectroscopic imaging of secretory granules in human eccrine sweat glands. Eur J Histochem. 1994;38(4):327–330. [PubMed] [Google Scholar]
- Schmidt H. H., Walter U. NO at work. Cell. 1994 Sep 23;78(6):919–925. doi: 10.1016/0092-8674(94)90267-4. [DOI] [PubMed] [Google Scholar]
- Schäfer B. W., Heizmann C. W. The S100 family of EF-hand calcium-binding proteins: functions and pathology. Trends Biochem Sci. 1996 Apr;21(4):134–140. doi: 10.1016/s0968-0004(96)80167-8. [DOI] [PubMed] [Google Scholar]
- Shimosegawa T., Said S. I. Co-occurrence of immunoreactive calcitonin and calcitonin gene-related peptide in neuroendocrine cells of rat lungs. Cell Tissue Res. 1991 Jun;264(3):555–561. doi: 10.1007/BF00319045. [DOI] [PubMed] [Google Scholar]
- Sternini C., Brecha N. Immunocytochemical identification of islet cells and nerve fibers containing calcitonin gene-related peptide-like immunoreactivity in the rat pancreas. Gastroenterology. 1986 May;90(5 Pt 1):1155–1163. doi: 10.1016/0016-5085(86)90380-x. [DOI] [PubMed] [Google Scholar]
- Stones R. W., Loesch A., Beard R. W., Burnstock G. Substance P: endothelial localization and pharmacology in the human ovarian vein. Obstet Gynecol. 1995 Feb;85(2):273–278. doi: 10.1016/0029-7844(94)00368-N. [DOI] [PubMed] [Google Scholar]
- Tanaka E., Uchiyama S., Nakano S. Effects of calcitonin gene-related peptide and vasoactive intestinal peptide on nicotine-induced sweating in man. J Auton Nerv Syst. 1990 Jul;30(3):265–268. doi: 10.1016/0165-1838(90)90258-k. [DOI] [PubMed] [Google Scholar]
- Thomsen L. L., Miles D. W., Happerfield L., Bobrow L. G., Knowles R. G., Moncada S. Nitric oxide synthase activity in human breast cancer. Br J Cancer. 1995 Jul;72(1):41–44. doi: 10.1038/bjc.1995.274. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wallengren J., Ekman R., Sundler F. Occurrence and distribution of neuropeptides in the human skin. An immunocytochemical and immunochemical study on normal skin and blister fluid from inflamed skin. Acta Derm Venereol. 1987;67(3):185–192. [PubMed] [Google Scholar]
- Weller R., Pattullo S., Smith L., Golden M., Ormerod A., Benjamin N. Nitric oxide is generated on the skin surface by reduction of sweat nitrate. J Invest Dermatol. 1996 Sep;107(3):327–331. doi: 10.1111/1523-1747.ep12363167. [DOI] [PubMed] [Google Scholar]