Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1997 Aug 1;25(15):3164–3168. doi: 10.1093/nar/25.15.3164

Optimization of the performance of the polymerase chain reaction in silicon-based microstructures.

T B Taylor 1, E S Winn-Deen 1, E Picozza 1, T M Woudenberg 1, M Albin 1
PMCID: PMC146863  PMID: 9224619

Abstract

We have demonstrated the ability to perform real-time homogeneous, sequence specific detection of PCR products in silicon microstructures. Optimal design/ processing result in equivalent performance (yield and specificity) for high surface-to-volume silicon structures as compared to larger volume reactions in polypropylene tubes. Amplifications in volumes as small as 0.5 microl and thermal cycling times reduced as much as 5-fold from that of conventional systems have been demonstrated for the microstructures.

Full Text

The Full Text of this article is available as a PDF (1.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abramowitz S. Towards inexpensive DNA diagnostics. Trends Biotechnol. 1996 Oct;14(10):397–401. doi: 10.1016/0167-7799(96)10051-2. [DOI] [PubMed] [Google Scholar]
  2. Burns M. A., Mastrangelo C. H., Sammarco T. S., Man F. P., Webster J. R., Johnsons B. N., Foerster B., Jones D., Fields Y., Kaiser A. R. Microfabricated structures for integrated DNA analysis. Proc Natl Acad Sci U S A. 1996 May 28;93(11):5556–5561. doi: 10.1073/pnas.93.11.5556. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cheng J., Shoffner M. A., Hvichia G. E., Kricka L. J., Wilding P. Chip PCR. II. Investigation of different PCR amplification systems in microbabricated silicon-glass chips. Nucleic Acids Res. 1996 Jan 15;24(2):380–385. doi: 10.1093/nar/24.2.380. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Higuchi R., Fockler C., Dollinger G., Watson R. Kinetic PCR analysis: real-time monitoring of DNA amplification reactions. Biotechnology (N Y) 1993 Sep;11(9):1026–1030. doi: 10.1038/nbt0993-1026. [DOI] [PubMed] [Google Scholar]
  5. Holland P. M., Abramson R. D., Watson R., Gelfand D. H. Detection of specific polymerase chain reaction product by utilizing the 5'----3' exonuclease activity of Thermus aquaticus DNA polymerase. Proc Natl Acad Sci U S A. 1991 Aug 15;88(16):7276–7280. doi: 10.1073/pnas.88.16.7276. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Lee L. G., Connell C. R., Bloch W. Allelic discrimination by nick-translation PCR with fluorogenic probes. Nucleic Acids Res. 1993 Aug 11;21(16):3761–3766. doi: 10.1093/nar/21.16.3761. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Lockhart D. J., Dong H., Byrne M. C., Follettie M. T., Gallo M. V., Chee M. S., Mittmann M., Wang C., Kobayashi M., Horton H. Expression monitoring by hybridization to high-density oligonucleotide arrays. Nat Biotechnol. 1996 Dec;14(13):1675–1680. doi: 10.1038/nbt1296-1675. [DOI] [PubMed] [Google Scholar]
  8. Shoffner M. A., Cheng J., Hvichia G. E., Kricka L. J., Wilding P. Chip PCR. I. Surface passivation of microfabricated silicon-glass chips for PCR. Nucleic Acids Res. 1996 Jan 15;24(2):375–379. doi: 10.1093/nar/24.2.375. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Wittwer C. T., Garling D. J. Rapid cycle DNA amplification: time and temperature optimization. Biotechniques. 1991 Jan;10(1):76–83. [PubMed] [Google Scholar]
  10. Woolley A. T., Hadley D., Landre P., deMello A. J., Mathies R. A., Northrup M. A. Functional integration of PCR amplification and capillary electrophoresis in a microfabricated DNA analysis device. Anal Chem. 1996 Dec 1;68(23):4081–4086. doi: 10.1021/ac960718q. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES