Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1997 Aug 15;25(16):3187–3195. doi: 10.1093/nar/25.16.3187

Comparative sequence analysis of ribonucleases HII, III, II PH and D.

I S Mian 1
PMCID: PMC146874  PMID: 9241229

Abstract

Escherichia coli ribonucleases (RNases) HII, III, II, PH and D have been used to characterise new and known viral, bacterial, archaeal and eucaryotic sequences similar to these endo- (HII and III) and exoribonucleases (II, PH and D). Statistical models, hidden Markov models (HMMs), were created for the RNase HII, III, II and PH and D families as well as a double-stranded RNA binding domain present in RNase III. Results suggest that the RNase D family, which includes Werner syndrome protein and the 100 kDa antigenic component of the human polymyositis scleroderma (PMSCL) autoantigen, is a 3'-->5' exoribonuclease structurally and functionally related to the 3'-->5' exodeoxyribonuclease domain of DNA polymerases. Polynucleotide phosphorylases and the RNase PH family, which includes the 75 kDa PMSCL autoantigen, possess a common domain suggesting similar structures and mechanisms of action for these 3'-->5' phosphorolytic enzymes. Examination of HMM-generated multiple sequences alignments for each family suggest amino acids that may be important for their structure, substrate binding and/or catalysis.

Full Text

The Full Text of this article is available as a PDF (682.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altschul S. F. Amino acid substitution matrices from an information theoretic perspective. J Mol Biol. 1991 Jun 5;219(3):555–565. doi: 10.1016/0022-2836(91)90193-A. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. Basic local alignment search tool. J Mol Biol. 1990 Oct 5;215(3):403–410. doi: 10.1016/S0022-2836(05)80360-2. [DOI] [PubMed] [Google Scholar]
  3. Apirion D., Miczak A. RNA processing in prokaryotic cells. Bioessays. 1993 Feb;15(2):113–120. doi: 10.1002/bies.950150207. [DOI] [PubMed] [Google Scholar]
  4. Baldi P., Chauvin Y., Hunkapiller T., McClure M. A. Hidden Markov models of biological primary sequence information. Proc Natl Acad Sci U S A. 1994 Feb 1;91(3):1059–1063. doi: 10.1073/pnas.91.3.1059. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Barrett C., Hughey R., Karplus K. Scoring hidden Markov models. Comput Appl Biosci. 1997 Apr;13(2):191–199. doi: 10.1093/bioinformatics/13.2.191. [DOI] [PubMed] [Google Scholar]
  6. Barton G. J. ALSCRIPT: a tool to format multiple sequence alignments. Protein Eng. 1993 Jan;6(1):37–40. doi: 10.1093/protein/6.1.37. [DOI] [PubMed] [Google Scholar]
  7. Beese L. S., Derbyshire V., Steitz T. A. Structure of DNA polymerase I Klenow fragment bound to duplex DNA. Science. 1993 Apr 16;260(5106):352–355. doi: 10.1126/science.8469987. [DOI] [PubMed] [Google Scholar]
  8. Beese L. S., Steitz T. A. Structural basis for the 3'-5' exonuclease activity of Escherichia coli DNA polymerase I: a two metal ion mechanism. EMBO J. 1991 Jan;10(1):25–33. doi: 10.1002/j.1460-2075.1991.tb07917.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Bernad A., Blanco L., Lázaro J. M., Martín G., Salas M. A conserved 3'----5' exonuclease active site in prokaryotic and eukaryotic DNA polymerases. Cell. 1989 Oct 6;59(1):219–228. doi: 10.1016/0092-8674(89)90883-0. [DOI] [PubMed] [Google Scholar]
  10. Brown M., Hughey R., Krogh A., Mian I. S., Sjölander K., Haussler D. Using Dirichlet mixture priors to derive hidden Markov models for protein families. Proc Int Conf Intell Syst Mol Biol. 1993;1:47–55. [PubMed] [Google Scholar]
  11. Bult C. J., White O., Olsen G. J., Zhou L., Fleischmann R. D., Sutton G. G., Blake J. A., FitzGerald L. M., Clayton R. A., Gocayne J. D. Complete genome sequence of the methanogenic archaeon, Methanococcus jannaschii. Science. 1996 Aug 23;273(5278):1058–1073. doi: 10.1126/science.273.5278.1058. [DOI] [PubMed] [Google Scholar]
  12. Bycroft M., Grünert S., Murzin A. G., Proctor M., St Johnston D. NMR solution structure of a dsRNA binding domain from Drosophila staufen protein reveals homology to the N-terminal domain of ribosomal protein S5. EMBO J. 1995 Jul 17;14(14):3563–3571. doi: 10.1002/j.1460-2075.1995.tb07362.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Coburn G. A., Mackie G. A. Differential sensitivities of portions of the mRNA for ribosomal protein S20 to 3'-exonucleases dependent on oligoadenylation and RNA secondary structure. J Biol Chem. 1996 Jun 28;271(26):15776–15781. doi: 10.1074/jbc.271.26.15776. [DOI] [PubMed] [Google Scholar]
  14. Davidov Y., Rahat A., Flechner I., Pines O. Characterization of the rnc-97 mutation of RNAaseIII: a glycine to glutamate substitution increases the requirement for magnesium ions. J Gen Microbiol. 1993 Apr;139(4):717–724. doi: 10.1099/00221287-139-4-717. [DOI] [PubMed] [Google Scholar]
  15. Derbyshire V., Freemont P. S., Sanderson M. R., Beese L., Friedman J. M., Joyce C. M., Steitz T. A. Genetic and crystallographic studies of the 3',5'-exonucleolytic site of DNA polymerase I. Science. 1988 Apr 8;240(4849):199–201. doi: 10.1126/science.2832946. [DOI] [PubMed] [Google Scholar]
  16. Deutscher M. P. Ribonuclease multiplicity, diversity, and complexity. J Biol Chem. 1993 Jun 25;268(18):13011–13014. [PubMed] [Google Scholar]
  17. Doolittle R. F., Feng D. F., Johnson M. S., McClure M. A. Origins and evolutionary relationships of retroviruses. Q Rev Biol. 1989 Mar;64(1):1–30. doi: 10.1086/416128. [DOI] [PubMed] [Google Scholar]
  18. Eddy S. R. Hidden Markov models. Curr Opin Struct Biol. 1996 Jun;6(3):361–365. doi: 10.1016/s0959-440x(96)80056-x. [DOI] [PubMed] [Google Scholar]
  19. Elela S. A., Igel H., Ares M., Jr RNase III cleaves eukaryotic preribosomal RNA at a U3 snoRNP-dependent site. Cell. 1996 Apr 5;85(1):115–124. doi: 10.1016/s0092-8674(00)81087-9. [DOI] [PubMed] [Google Scholar]
  20. Epstein C. J., Motulsky A. G. Werner syndrome: entering the helicase era. Bioessays. 1996 Dec;18(12):1025–1027. doi: 10.1002/bies.950181214. [DOI] [PubMed] [Google Scholar]
  21. Fujiwara Y., Asogawa M., Konagaya A. Stochastic motif extraction using hidden Markov model. Proc Int Conf Intell Syst Mol Biol. 1994;2:121–129. [PubMed] [Google Scholar]
  22. Gatignol A., Buckler C., Jeang K. T. Relatedness of an RNA-binding motif in human immunodeficiency virus type 1 TAR RNA-binding protein TRBP to human P1/dsI kinase and Drosophila staufen. Mol Cell Biol. 1993 Apr;13(4):2193–2202. doi: 10.1128/mcb.13.4.2193. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Golz J. F., Clarke A. E., Newbigin E. Self-incompatibility in flowering plants. Curr Opin Genet Dev. 1995 Oct;5(5):640–645. doi: 10.1016/0959-437x(95)80033-6. [DOI] [PubMed] [Google Scholar]
  24. Hofmann K., Bucher P. The FHA domain: a putative nuclear signalling domain found in protein kinases and transcription factors. Trends Biochem Sci. 1995 Sep;20(9):347–349. doi: 10.1016/s0968-0004(00)89072-6. [DOI] [PubMed] [Google Scholar]
  25. Hughey R., Krogh A. Hidden Markov models for sequence analysis: extension and analysis of the basic method. Comput Appl Biosci. 1996 Apr;12(2):95–107. doi: 10.1093/bioinformatics/12.2.95. [DOI] [PubMed] [Google Scholar]
  26. Itaya M. Isolation and characterization of a second RNase H (RNase HII) of Escherichia coli K-12 encoded by the rnhB gene. Proc Natl Acad Sci U S A. 1990 Nov;87(21):8587–8591. doi: 10.1073/pnas.87.21.8587. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Jensen K. F., Andersen J. T., Poulsen P. Overexpression and rapid purification of the orfE/rph gene product, RNase PH of Escherichia coli. J Biol Chem. 1992 Aug 25;267(24):17147–17152. [PubMed] [Google Scholar]
  28. Jones G. H., Bibb M. J. Guanosine pentaphosphate synthetase from Streptomyces antibioticus is also a polynucleotide phosphorylase. J Bacteriol. 1996 Jul;178(14):4281–4288. doi: 10.1128/jb.178.14.4281-4288.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Joyce C. M., Steitz T. A. Function and structure relationships in DNA polymerases. Annu Rev Biochem. 1994;63:777–822. doi: 10.1146/annurev.bi.63.070194.004021. [DOI] [PubMed] [Google Scholar]
  30. Kao T. H., McCubbin A. G. How flowering plants discriminate between self and non-self pollen to prevent inbreeding. Proc Natl Acad Sci U S A. 1996 Oct 29;93(22):12059–12065. doi: 10.1073/pnas.93.22.12059. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Katayanagi K., Miyagawa M., Matsushima M., Ishikawa M., Kanaya S., Nakamura H., Ikehara M., Matsuzaki T., Morikawa K. Structural details of ribonuclease H from Escherichia coli as refined to an atomic resolution. J Mol Biol. 1992 Feb 20;223(4):1029–1052. doi: 10.1016/0022-2836(92)90260-q. [DOI] [PubMed] [Google Scholar]
  32. Katayanagi K., Okumura M., Morikawa K. Crystal structure of Escherichia coli RNase HI in complex with Mg2+ at 2.8 A resolution: proof for a single Mg(2+)-binding site. Proteins. 1993 Dec;17(4):337–346. doi: 10.1002/prot.340170402. [DOI] [PubMed] [Google Scholar]
  33. Kelly K. O., Deutscher M. P. Characterization of Escherichia coli RNase PH. J Biol Chem. 1992 Aug 25;267(24):17153–17158. [PubMed] [Google Scholar]
  34. Kharrat A., Macias M. J., Gibson T. J., Nilges M., Pastore A. Structure of the dsRNA binding domain of E. coli RNase III. EMBO J. 1995 Jul 17;14(14):3572–3584. doi: 10.1002/j.1460-2075.1995.tb07363.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Kinoshita N., Goebl M., Yanagida M. The fission yeast dis3+ gene encodes a 110-kDa essential protein implicated in mitotic control. Mol Cell Biol. 1991 Dec;11(12):5839–5847. doi: 10.1128/mcb.11.12.5839. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Krogh A., Brown M., Mian I. S., Sjölander K., Haussler D. Hidden Markov models in computational biology. Applications to protein modeling. J Mol Biol. 1994 Feb 4;235(5):1501–1531. doi: 10.1006/jmbi.1994.1104. [DOI] [PubMed] [Google Scholar]
  37. Kutish G. F., Li Y., Lu Z., Furuta M., Rock D. L., Van Etten J. L. Analysis of 76 kb of the chlorella virus PBCV-1 330-kb genome: map positions 182 to 258. Virology. 1996 Sep 15;223(2):303–317. doi: 10.1006/viro.1996.0482. [DOI] [PubMed] [Google Scholar]
  38. Li H., Nicholson A. W. Defining the enzyme binding domain of a ribonuclease III processing signal. Ethylation interference and hydroxyl radical footprinting using catalytically inactive RNase III mutants. EMBO J. 1996 Mar 15;15(6):1421–1433. [PMC free article] [PubMed] [Google Scholar]
  39. Li Z., Deutscher M. P. The role of individual exoribonucleases in processing at the 3' end of Escherichia coli tRNA precursors. J Biol Chem. 1994 Feb 25;269(8):6064–6071. [PubMed] [Google Scholar]
  40. Navas T. A., Zhou Z., Elledge S. J. DNA polymerase epsilon links the DNA replication machinery to the S phase checkpoint. Cell. 1995 Jan 13;80(1):29–39. doi: 10.1016/0092-8674(95)90448-4. [DOI] [PubMed] [Google Scholar]
  41. Pepe C. M., Maslesa-Galić S., Simons R. W. Decay of the IS10 antisense RNA by 3' exoribonucleases: evidence that RNase II stabilizes RNA-OUT against PNPase attack. Mol Microbiol. 1994 Sep;13(6):1133–1142. doi: 10.1111/j.1365-2958.1994.tb00504.x. [DOI] [PubMed] [Google Scholar]
  42. Plotz P. H., Rider L. G., Targoff I. N., Raben N., O'Hanlon T. P., Miller F. W. NIH conference. Myositis: immunologic contributions to understanding cause, pathogenesis, and therapy. Ann Intern Med. 1995 May 1;122(9):715–724. doi: 10.7326/0003-4819-122-9-199505010-00010. [DOI] [PubMed] [Google Scholar]
  43. Py B., Causton H., Mudd E. A., Higgins C. F. A protein complex mediating mRNA degradation in Escherichia coli. Mol Microbiol. 1994 Nov;14(4):717–729. doi: 10.1111/j.1365-2958.1994.tb01309.x. [DOI] [PubMed] [Google Scholar]
  44. Reuven N. B., Deutscher M. P. Multiple exoribonucleases are required for the 3' processing of Escherichia coli tRNA precursors in vivo. FASEB J. 1993 Jan;7(1):143–148. doi: 10.1096/fasebj.7.1.8422961. [DOI] [PubMed] [Google Scholar]
  45. Rost B. TOPITS: threading one-dimensional predictions into three-dimensional structures. Proc Int Conf Intell Syst Mol Biol. 1995;3:314–321. [PubMed] [Google Scholar]
  46. Rotondo G., Frendewey D. Purification and characterization of the Pac1 ribonuclease of Schizosaccharomyces pombe. Nucleic Acids Res. 1996 Jun 15;24(12):2377–2386. doi: 10.1093/nar/24.12.2377. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Rotondo G., Gillespie M., Frendewey D. Rescue of the fission yeast snRNA synthesis mutant snm1 by overexpression of the double-strand-specific Pac1 ribonuclease. Mol Gen Genet. 1995 Jun 25;247(6):698–708. doi: 10.1007/BF00290401. [DOI] [PubMed] [Google Scholar]
  48. Schmid H. P., Pouch M. N., Petit F., Dadet M. H., Badaoui S., Boissonnet G., Buri J., Norris V., Briand Y. Relationships between proteasomes and RNA. Mol Biol Rep. 1995;21(1):43–47. doi: 10.1007/BF00990969. [DOI] [PubMed] [Google Scholar]
  49. Sjölander K., Karplus K., Brown M., Hughey R., Krogh A., Mian I. S., Haussler D. Dirichlet mixtures: a method for improved detection of weak but significant protein sequence homology. Comput Appl Biosci. 1996 Aug;12(4):327–345. doi: 10.1093/bioinformatics/12.4.327. [DOI] [PubMed] [Google Scholar]
  50. St Johnston D., Brown N. H., Gall J. G., Jantsch M. A conserved double-stranded RNA-binding domain. Proc Natl Acad Sci U S A. 1992 Nov 15;89(22):10979–10983. doi: 10.1073/pnas.89.22.10979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Stone J. M., Collinge M. A., Smith R. D., Horn M. A., Walker J. C. Interaction of a protein phosphatase with an Arabidopsis serine-threonine receptor kinase. Science. 1994 Nov 4;266(5186):793–795. doi: 10.1126/science.7973632. [DOI] [PubMed] [Google Scholar]
  52. Sutton A., Immanuel D., Arndt K. T. The SIT4 protein phosphatase functions in late G1 for progression into S phase. Mol Cell Biol. 1991 Apr;11(4):2133–2148. doi: 10.1128/mcb.11.4.2133. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Tobe T., Sasakawa C., Okada N., Honma Y., Yoshikawa M. vacB, a novel chromosomal gene required for expression of virulence genes on the large plasmid of Shigella flexneri. J Bacteriol. 1992 Oct;174(20):6359–6367. doi: 10.1128/jb.174.20.6359-6367.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Tomasiewicz H. G., McHenry C. S. Sequence analysis of the Escherichia coli dnaE gene. J Bacteriol. 1987 Dec;169(12):5735–5744. doi: 10.1128/jb.169.12.5735-5744.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Turcq B., Dobinson K. F., Serizawa N., Lambowitz A. M. A protein required for RNA processing and splicing in Neurospora mitochondria is related to gene products involved in cell cycle protein phosphatase functions. Proc Natl Acad Sci U S A. 1992 Mar 1;89(5):1676–1680. doi: 10.1073/pnas.89.5.1676. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Wang J. Y., Qiu L., Wu E. D., Drlica K. RNases involved in ribozyme degradation in Escherichia coli. J Bacteriol. 1996 Mar;178(6):1640–1645. doi: 10.1128/jb.178.6.1640-1645.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Wang J., Yu P., Lin T. C., Konigsberg W. H., Steitz T. A. Crystal structures of an NH2-terminal fragment of T4 DNA polymerase and its complexes with single-stranded DNA and with divalent metal ions. Biochemistry. 1996 Jun 25;35(25):8110–8119. doi: 10.1021/bi960178r. [DOI] [PubMed] [Google Scholar]
  58. Wilson R. B., Brenner A. A., White T. B., Engler M. J., Gaughran J. P., Tatchell K. The Saccharomyces cerevisiae SRK1 gene, a suppressor of bcy1 and ins1, may be involved in protein phosphatase function. Mol Cell Biol. 1991 Jun;11(6):3369–3373. doi: 10.1128/mcb.11.6.3369. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Xu F., Cohen S. N. RNA degradation in Escherichia coli regulated by 3' adenylation and 5' phosphorylation. Nature. 1995 Mar 9;374(6518):180–183. doi: 10.1038/374180a0. [DOI] [PubMed] [Google Scholar]
  60. Yu C. E., Oshima J., Fu Y. H., Wijsman E. M., Hisama F., Alisch R., Matthews S., Nakura J., Miki T., Ouais S. Positional cloning of the Werner's syndrome gene. Science. 1996 Apr 12;272(5259):258–262. doi: 10.1126/science.272.5259.258. [DOI] [PubMed] [Google Scholar]
  61. Zhang J. R., Deutscher M. P. Transfer RNA is a substrate for RNase D in vivo. J Biol Chem. 1988 Dec 5;263(34):17909–17912. [PubMed] [Google Scholar]
  62. Zilhão R., Camelo L., Arraiano C. M. DNA sequencing and expression of the gene rnb encoding Escherichia coli ribonuclease II. Mol Microbiol. 1993 Apr;8(1):43–51. doi: 10.1111/j.1365-2958.1993.tb01201.x. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES