Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1997 Sep 15;25(18):3718–3723. doi: 10.1093/nar/25.18.3718

Oligonucleotides with conjugated dihydropyrroloindole tripeptides: base composition and backbone effects on hybridization.

I V Kutyavin 1, E A Lukhtanov 1, H B Gamper 1, R B Meyer 1
PMCID: PMC146950  PMID: 9278496

Abstract

The ability of conjugated minor groove binding (MGB) residues to stabilize nucleic acid duplexes was investigated by synthesis of oligonucleotides bearing a tethered dihydropyrroloindole tripeptide (CDPI3). Duplexes bearing one or more of these conjugated MGBs were varied by base composition (AT- or GC-rich oligonucleotides), backbone modifications (phosphodiester DNA, 2'-O-methyl phosphodiester RNA or phosphorothioate DNA) and site of attachment of the MGB moiety (5'- or 3'-end of either duplex strand). Melting temperatures of the duplexes were determined. The conjugated CDPI3 residue enhanced the stability of virtually all duplexes studied. The extent of stabilization was backbone and sequence dependent and reached a maximum value of 40-49 degrees C for d(pT)8. d(pA)8. Duplexes with a phosphorothioate DNA backbone responded similarly on CDPI3 conjugation, although they were less stable than analogous phosphodiesters. Modest stabilization was obtained for duplexes with a 2'-O-methyl RNA backbone. The conjugated CDPI3 residue stabilized GC-rich DNA duplexes, albeit to a lesser extent than for AT-rich duplexes of the same length.

Full Text

The Full Text of this article is available as a PDF (84.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Afonina I., Kutyavin I., Lukhtanov E., Meyer R. B., Gamper H. Sequence-specific arrest of primer extension on single-stranded DNA by an oligonucleotide-minor groove binder conjugate. Proc Natl Acad Sci U S A. 1996 Apr 16;93(8):3199–3204. doi: 10.1073/pnas.93.8.3199. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Afonina I., Zivarts M., Kutyavin I., Lukhtanov E., Gamper H., Meyer R. B. Efficient priming of PCR with short oligonucleotides conjugated to a minor groove binder. Nucleic Acids Res. 1997 Jul 1;25(13):2657–2660. doi: 10.1093/nar/25.13.2657. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Agrawal S., Temsamani J., Tang J. Y. Pharmacokinetics, biodistribution, and stability of oligodeoxynucleotide phosphorothioates in mice. Proc Natl Acad Sci U S A. 1991 Sep 1;88(17):7595–7599. doi: 10.1073/pnas.88.17.7595. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Animati F., Arcamone F. M., Conte M. R., Felicetti P., Galeone A., Lombardi P., Mayol L., Paloma L. G., Rossi C. Synthesis of two distamycin analogues and their binding mode to d(CGCAAATTTGCG)2 in the 2:1 solution complexes as determined by two-dimensional 1H-NMR. J Med Chem. 1995 Mar 31;38(7):1140–1149. doi: 10.1021/jm00007a011. [DOI] [PubMed] [Google Scholar]
  5. Asseline U., Delarue M., Lancelot G., Toulmé F., Thuong N. T., Montenay-Garestier T., Hélène C. Nucleic acid-binding molecules with high affinity and base sequence specificity: intercalating agents covalently linked to oligodeoxynucleotides. Proc Natl Acad Sci U S A. 1984 Jun;81(11):3297–3301. doi: 10.1073/pnas.81.11.3297. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Benimetskaya L. Z., Bulychev N. V., Kozionov A. L., Koshkin A. A., Lebedev A. V., Novozhilov SYu, Stockman M. I. Site-specific laser modification (cleavage) of oligodeoxynucleotides. Biopolymers. 1989 Jun;28(6):1129–1147. doi: 10.1002/bip.360280607. [DOI] [PubMed] [Google Scholar]
  7. Boger D. L., Johnson D. S. CC-1065 and the duocarmycins: unraveling the keys to a new class of naturally derived DNA alkylating agents. Proc Natl Acad Sci U S A. 1995 Apr 25;92(9):3642–3649. doi: 10.1073/pnas.92.9.3642. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Burckhardt G., Luck G., Zimmer C., Störl J., Krowicki K., Lown J. W. Variation of DNA sequence specificity of DNA-oligopeptide binding ligands related to netropsin: imidazole-containing lexitropsins. Biochim Biophys Acta. 1989 Sep 21;1009(1):11–18. doi: 10.1016/0167-4781(89)90072-9. [DOI] [PubMed] [Google Scholar]
  9. Cho J., Parks M. E., Dervan P. B. Cyclic polyamides for recognition in the minor groove of DNA. Proc Natl Acad Sci U S A. 1995 Oct 24;92(22):10389–10392. doi: 10.1073/pnas.92.22.10389. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Cosstick R., Eckstein F. Synthesis of d(GC) and d(CG) octamers containing alternating phosphorothioate linkages: effect of the phosphorothioate group on the B-Z transition. Biochemistry. 1985 Jul 2;24(14):3630–3638. doi: 10.1021/bi00335a035. [DOI] [PubMed] [Google Scholar]
  11. Eckstein F., Gindl H. Polyribonucleotides containing a phosphorothioate backbone. Eur J Biochem. 1970 Apr;13(3):558–564. doi: 10.1111/j.1432-1033.1970.tb00961.x. [DOI] [PubMed] [Google Scholar]
  12. Gottesfeld J. M., Neely L., Trauger J. W., Baird E. E., Dervan P. B. Regulation of gene expression by small molecules. Nature. 1997 May 8;387(6629):202–205. doi: 10.1038/387202a0. [DOI] [PubMed] [Google Scholar]
  13. Gryaznov S. M., Lloyd D. H. Modulation of oligonucleotide duplex and triplex stability via hydrophobic interactions. Nucleic Acids Res. 1993 Dec 25;21(25):5909–5915. doi: 10.1093/nar/21.25.5909. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hansen J. B., Koch T., Buchardt O., Nielsen P. E., Wirth M., Nordén B. Acridine-psoralen amines and their interaction with deoxyribonucleic acid. Biochemistry. 1983 Oct 11;22(21):4878–4886. doi: 10.1021/bi00290a003. [DOI] [PubMed] [Google Scholar]
  15. Inoue H., Hayase Y., Imura A., Iwai S., Miura K., Ohtsuka E. Synthesis and hybridization studies on two complementary nona(2'-O-methyl)ribonucleotides. Nucleic Acids Res. 1987 Aug 11;15(15):6131–6148. doi: 10.1093/nar/15.15.6131. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Isaacs S. T., Shen C. K., Hearst J. E., Rapoport H. Synthesis and characterization of new psoralen derivatives with superior photoreactivity with DNA and RNA. Biochemistry. 1977 Mar 22;16(6):1058–1064. doi: 10.1021/bi00625a005. [DOI] [PubMed] [Google Scholar]
  17. Kelly J. J., Baird E. E., Dervan P. B. Binding site size limit of the 2:1 pyrrole-imidazole polyamide-DNA motif. Proc Natl Acad Sci U S A. 1996 Jul 9;93(14):6981–6985. doi: 10.1073/pnas.93.14.6981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Kim D. Y., Shih D. S., Cho D. Y., Swenson D. H. Helix-stabilizing compounds CC-1065 and U-71,184 bind to RNA-DNA and DNA-DNA duplexes containing modified internucleotide linkages and stabilize duplexes against thermal melting. Antisense Res Dev. 1995 Spring;5(1):49–57. doi: 10.1089/ard.1995.5.49. [DOI] [PubMed] [Google Scholar]
  19. Kim D. Y., Swenson D. H., Cho D. Y., Taylor H. W., Shih D. S. Helix-stabilizing agent, CC-1065, enhances suppression of translation by an antisense oligodeoxynucleotide. Antisense Res Dev. 1995 Summer;5(2):149–154. doi: 10.1089/ard.1995.5.149. [DOI] [PubMed] [Google Scholar]
  20. Kubista M., Akerman B., Nordén B. Characterization of interaction between DNA and 4',6-diamidino-2-phenylindole by optical spectroscopy. Biochemistry. 1987 Jul 14;26(14):4545–4553. doi: 10.1021/bi00388a057. [DOI] [PubMed] [Google Scholar]
  21. LaPlanche L. A., James T. L., Powell C., Wilson W. D., Uznanski B., Stec W. J., Summers M. F., Zon G. Phosphorothioate-modified oligodeoxyribonucleotides. III. NMR and UV spectroscopic studies of the Rp-Rp, Sp-Sp, and Rp-Sp duplexes, [d(GGSAATTCC)]2, derived from diastereomeric O-ethyl phosphorothioates. Nucleic Acids Res. 1986 Nov 25;14(22):9081–9093. doi: 10.1093/nar/14.22.9081. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Lee M., Preti C. S., Vinson E., Wyatt M. D., Hartley J. A. GC sequence specific recognition by an N-formamido, C-terminus-modified and imidazole-containing analogue of netropsin. J Med Chem. 1994 Nov 25;37(24):4073–4075. doi: 10.1021/jm00050a003. [DOI] [PubMed] [Google Scholar]
  23. Levina A. S., Metelev V. G., Cohen A. S., Zamecnik P. C. Conjugates of minor groove DNA binders with oligodeoxynucleotides: synthesis and properties. Antisense Nucleic Acid Drug Dev. 1996 Summer;6(2):75–85. doi: 10.1089/oli.1.1996.6.75. [DOI] [PubMed] [Google Scholar]
  24. Lokhov S. G., Podyminogin M. A., Sergeev D. S., Silnikov V. N., Kutyavin I. V., Shishkin G. V., Zarytova V. P. Synthesis and high stability of complementary complexes of N-(2-hydroxyethyl)phenazinium derivatives of oligonucleotides. Bioconjug Chem. 1992 Sep-Oct;3(5):414–419. doi: 10.1021/bc00017a010. [DOI] [PubMed] [Google Scholar]
  25. Luck G., Triebel H., Waring M., Zimmer C. Conformation dependent binding of netropsin and distamycin to DNA and DNA model polymers. Nucleic Acids Res. 1974 Mar;1(3):503–530. doi: 10.1093/nar/1.3.503. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Lukhtanov E. A., Kutyavin I. V., Gamper H. B., Meyer R. B., Jr Oligodeoxyribonucleotides with conjugated dihydropyrroloindole oligopeptides: preparation and hybridization properties. Bioconjug Chem. 1995 Jul-Aug;6(4):418–426. doi: 10.1021/bc00034a012. [DOI] [PubMed] [Google Scholar]
  27. Lukhtanov E. A., Kutyavin I. V., Meyer R. B. Direct, solid phase assembly of dihydropyrroloindole peptides with conjugated oligonucleotides. Bioconjug Chem. 1996 Sep-Oct;7(5):564–567. doi: 10.1021/bc960041d. [DOI] [PubMed] [Google Scholar]
  28. Marck C., Kakiuchi N., Guschlbauer W. Specific interaction of netropsin, distamycin-3 and analogs with LC duplexes: reversion towards the B form of the 2'-deoxy-.2'-deoxy-2'-fluoro-hybrid duplexes upon specific interaction with netropsin, distamycin-3 and analogs. Nucleic Acids Res. 1982 Oct 11;10(19):6147–6161. doi: 10.1093/nar/10.19.6147. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Marky L. A., Breslauer K. J. Origins of netropsin binding affinity and specificity: correlations of thermodynamic and structural data. Proc Natl Acad Sci U S A. 1987 Jul;84(13):4359–4363. doi: 10.1073/pnas.84.13.4359. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Mohan S., Yathindra N. Flexibility of DNA in 2:1 drug-DNA complexes--simultaneous binding of two DAPI molecules to DNA. J Biomol Struct Dyn. 1992 Feb;9(4):695–704. doi: 10.1080/07391102.1992.10507949. [DOI] [PubMed] [Google Scholar]
  31. Moon J. H., Kim S. K., Sehlstedt U., Rodger A., Nordén B. DNA structural features responsible for sequence-dependent binding geometries of Hoechst 33258. Biopolymers. 1996 May;38(5):593–606. doi: 10.1002/(SICI)1097-0282(199605)38:5%3C593::AID-BIP5%3E3.0.CO;2-N. [DOI] [PubMed] [Google Scholar]
  32. Mrksich M., Wade W. S., Dwyer T. J., Geierstanger B. H., Wemmer D. E., Dervan P. B. Antiparallel side-by-side dimeric motif for sequence-specific recognition in the minor groove of DNA by the designed peptide 1-methylimidazole-2-carboxamide netropsin. Proc Natl Acad Sci U S A. 1992 Aug 15;89(16):7586–7590. doi: 10.1073/pnas.89.16.7586. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Petrie C. R., Reed M. W., Adams A. D., Meyer R. B., Jr An improved CPG support for the synthesis of 3'-amine-tailed oligonucleotides. Bioconjug Chem. 1992 Jan-Feb;3(1):85–87. doi: 10.1021/bc00013a014. [DOI] [PubMed] [Google Scholar]
  34. Rajur Sharanabasava B., Robles Jordi, Wiederholt Kristin, Kuimelis Robert G., McLaughlin Larry W. Hoechst 33258 Tethered by a Hexa(ethylene glycol) Linker to the 5'-Termini of Oligodeoxynucleotide 15-Mers: Duplex Stabilization and Fluorescence Properties. J Org Chem. 1997 Feb 7;62(3):523–529. doi: 10.1021/jo9618536. [DOI] [PubMed] [Google Scholar]
  35. Reed M. W., Adams A. D., Nelson J. S., Meyer R. B., Jr Acridine- and cholesterol-derivatized solid supports for improved synthesis of 3'-modified oligonucleotides. Bioconjug Chem. 1991 Jul-Aug;2(4):217–225. doi: 10.1021/bc00010a005. [DOI] [PubMed] [Google Scholar]
  36. Reinhardt C. G., Krugh T. R. A comparative study of ethidium bromide complexes with dinucleotides and DNA: direct evidence for intercalation and nucleic acid sequence preferences. Biochemistry. 1978 Nov 14;17(23):4845–4854. doi: 10.1021/bi00616a001. [DOI] [PubMed] [Google Scholar]
  37. Reynolds V. L., Molineux I. J., Kaplan D. J., Swenson D. H., Hurley L. H. Reaction of the antitumor antibiotic CC-1065 with DNA. Location of the site of thermally induced strand breakage and analysis of DNA sequence specificity. Biochemistry. 1985 Oct 22;24(22):6228–6237. doi: 10.1021/bi00343a029. [DOI] [PubMed] [Google Scholar]
  38. Scahill T. A., Jensen R. M., Swenson D. H., Hatzenbuhler N. T., Petzold G., Wierenga W., Brahme N. D. An NMR study of the covalent and noncovalent interactions of CC-1065 and DNA. Biochemistry. 1990 Mar 20;29(11):2852–2860. doi: 10.1021/bi00463a031. [DOI] [PubMed] [Google Scholar]
  39. Shabarova Z. A., Dolinnaya N. G., Drutsa V. L., Melnikova N. P., Purmal A. A. DNA-like duplexes with repetitions. III. Efficient template-guided chemical polymerization of d(TGGCCAAGCTp). Nucleic Acids Res. 1981 Nov 11;9(21):5747–5761. doi: 10.1093/nar/9.21.5747. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Stein C. A., Subasinghe C., Shinozuka K., Cohen J. S. Physicochemical properties of phosphorothioate oligodeoxynucleotides. Nucleic Acids Res. 1988 Apr 25;16(8):3209–3221. doi: 10.1093/nar/16.8.3209. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Suggs J. W., Taylor D. A. Evidence for sequence-specific conformational changes in DNA from the melting temperatures of DNA phosphorothioate derivatives. Nucleic Acids Res. 1985 Aug 12;13(15):5707–5716. doi: 10.1093/nar/13.15.5707. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Thuong N. T., Asseline U., Roig V., Takasugi M., Hélène C. Oligo(alpha-deoxynucleotide)s covalently linked to intercalating agents: differential binding to ribo- and deoxyribopolynucleotides and stability towards nuclease digestion. Proc Natl Acad Sci U S A. 1987 Aug;84(15):5129–5133. doi: 10.1073/pnas.84.15.5129. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Wartell R. M., Larson J. E., Wells R. D. Netropsin. A specific probe for A-T regions of duplex deoxyribonucleic acid. J Biol Chem. 1974 Nov 10;249(21):6719–6731. [PubMed] [Google Scholar]
  44. Wartell R. M., Larson J. E., Wells R. D. Netropsin. A specific probe for A-T regions of duplex deoxyribonucleic acid. J Biol Chem. 1974 Nov 10;249(21):6719–6731. [PubMed] [Google Scholar]
  45. Zimmer C., Wähnert U. Nonintercalating DNA-binding ligands: specificity of the interaction and their use as tools in biophysical, biochemical and biological investigations of the genetic material. Prog Biophys Mol Biol. 1986;47(1):31–112. doi: 10.1016/0079-6107(86)90005-2. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES