Skip to main content
Environmental Health Perspectives logoLink to Environmental Health Perspectives
. 1996 May;104(Suppl 3):465–469. doi: 10.1289/ehp.96104s3465

Oxidative damage to DNA: do we have a reliable biomarker?

A R Collins 1, M Dusinská 1, C M Gedik 1, R Stĕtina 1
PMCID: PMC1469644  PMID: 8781365

Abstract

Oxidized bases in DNA can be measured directly by high-performance liquid chromatography (HPLC). 7,8-Dihydro-8-oxo-guanine (8-OHgua), as the most abundant oxidation product, is often regarded as an indicator of oxidative stress. Estimates of endogenous 8-OHgua levels in human lymphocyte DNA are between 2 and 8 for every 10(5) unaltered bases--a high frequency in view of the potential mutagenicity of this base alteration and of the presence of an effective base excision repair pathway in eukaryotic cells. An alternative approach to the measurement of oxidized bases makes use of repair endonucleases with appropriate lesion specificities--endonuclease III, for oxidized pyrimidines and formamidopyrimidine glycosylase for 8-OHgua. These enzymes introduce breaks at sites of damage in DNA. The comet assay (single cell gel electrophoresis) can then be used to detect the DNA breaks. This modified comet assay, like other enzyme-linked DNA breakage assays, gives a value for endogenous oxidative base damage that is more than 10-fold lower than most estimated from HPLC. It is possible that HPLC-based estimates are artificially high because oxidation of guanine occurs during isolation, storage, or hydrolysis of DNA. Using a revised DNA isolation procedure designed to decrease in vitro oxidation, we have obtained results for 8-OHgua concentrations in human lymphocytes that are closure to the figures obtained by the comet assay. It is still an open question whether 8-OHgua, measured by HPLC or by the comet assay, is a valid marker for oxidative damage.

Full text

PDF
466

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ames B. N. Dietary carcinogens and anticarcinogens. Oxygen radicals and degenerative diseases. Science. 1983 Sep 23;221(4617):1256–1264. doi: 10.1126/science.6351251. [DOI] [PubMed] [Google Scholar]
  2. Bessho T., Tano K., Kasai H., Ohtsuka E., Nishimura S. Evidence for two DNA repair enzymes for 8-hydroxyguanine (7,8-dihydro-8-oxoguanine) in human cells. J Biol Chem. 1993 Sep 15;268(26):19416–19421. [PubMed] [Google Scholar]
  3. Block G. The data support a role for antioxidants in reducing cancer risk. Nutr Rev. 1992 Jul;50(7):207–213. doi: 10.1111/j.1753-4887.1992.tb01329.x. [DOI] [PubMed] [Google Scholar]
  4. Boiteux S., Gajewski E., Laval J., Dizdaroglu M. Substrate specificity of the Escherichia coli Fpg protein (formamidopyrimidine-DNA glycosylase): excision of purine lesions in DNA produced by ionizing radiation or photosensitization. Biochemistry. 1992 Jan 14;31(1):106–110. doi: 10.1021/bi00116a016. [DOI] [PubMed] [Google Scholar]
  5. Cerutti P. A. Effects of ionizing radiation on mammalian cells. Naturwissenschaften. 1974 Feb;61(2):51–59. doi: 10.1007/BF00596195. [DOI] [PubMed] [Google Scholar]
  6. Claycamp H. G. Phenol sensitization of DNA to subsequent oxidative damage in 8-hydroxyguanine assays. Carcinogenesis. 1992 Jul;13(7):1289–1292. doi: 10.1093/carcin/13.7.1289. [DOI] [PubMed] [Google Scholar]
  7. Collins A. R., Duthie S. J., Dobson V. L. Direct enzymic detection of endogenous oxidative base damage in human lymphocyte DNA. Carcinogenesis. 1993 Sep;14(9):1733–1735. doi: 10.1093/carcin/14.9.1733. [DOI] [PubMed] [Google Scholar]
  8. Collins A. R., Ma A. G., Duthie S. J. The kinetics of repair of oxidative DNA damage (strand breaks and oxidised pyrimidines) in human cells. Mutat Res. 1995 Jan;336(1):69–77. doi: 10.1016/0921-8777(94)00043-6. [DOI] [PubMed] [Google Scholar]
  9. Czene S., Harms-Ringdahl M. Detection of single-strand breaks and formamidopyrimidine-DNA glycosylase-sensitive sites in DNA of cultured human fibroblasts. Mutat Res. 1995 May;336(3):235–242. doi: 10.1016/0921-8777(94)00058-e. [DOI] [PubMed] [Google Scholar]
  10. Dorgan J. F., Schatzkin A. Antioxidant micronutrients in cancer prevention. Hematol Oncol Clin North Am. 1991 Feb;5(1):43–68. [PubMed] [Google Scholar]
  11. Epe B., Hegler J. Oxidative DNA damage: endonuclease fingerprinting. Methods Enzymol. 1994;234:122–131. doi: 10.1016/0076-6879(94)34083-8. [DOI] [PubMed] [Google Scholar]
  12. Gedik C. M., Ewen S. W., Collins A. R. Single-cell gel electrophoresis applied to the analysis of UV-C damage and its repair in human cells. Int J Radiat Biol. 1992 Sep;62(3):313–320. doi: 10.1080/09553009214552161. [DOI] [PubMed] [Google Scholar]
  13. Halliwell B., Dizdaroglu M. The measurement of oxidative damage to DNA by HPLC and GC/MS techniques. Free Radic Res Commun. 1992;16(2):75–87. doi: 10.3109/10715769209049161. [DOI] [PubMed] [Google Scholar]
  14. Inoue T., Mu Z., Sumikawa K., Adachi K., Okochi T. Effect of physical exercise on the content of 8-hydroxydeoxyguanosine in nuclear DNA prepared from human lymphocytes. Jpn J Cancer Res. 1993 Jul;84(7):720–725. doi: 10.1111/j.1349-7006.1993.tb02035.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Lindahl T. Instability and decay of the primary structure of DNA. Nature. 1993 Apr 22;362(6422):709–715. doi: 10.1038/362709a0. [DOI] [PubMed] [Google Scholar]
  16. Loft S., Astrup A., Buemann B., Poulsen H. E. Oxidative DNA damage correlates with oxygen consumption in humans. FASEB J. 1994 May;8(8):534–537. doi: 10.1096/fasebj.8.8.8181672. [DOI] [PubMed] [Google Scholar]
  17. Loft S., Fischer-Nielsen A., Jeding I. B., Vistisen K., Poulsen H. E. 8-Hydroxydeoxyguanosine as a urinary biomarker of oxidative DNA damage. J Toxicol Environ Health. 1993 Oct-Nov;40(2-3):391–404. doi: 10.1080/15287399309531806. [DOI] [PubMed] [Google Scholar]
  18. Miller A. B. Diet and cancer. A review. Acta Oncol. 1990;29(1):87–95. doi: 10.3109/02841869009089996. [DOI] [PubMed] [Google Scholar]
  19. Park E. M., Shigenaga M. K., Degan P., Korn T. S., Kitzler J. W., Wehr C. M., Kolachana P., Ames B. N. Assay of excised oxidative DNA lesions: isolation of 8-oxoguanine and its nucleoside derivatives from biological fluids with a monoclonal antibody column. Proc Natl Acad Sci U S A. 1992 Apr 15;89(8):3375–3379. doi: 10.1073/pnas.89.8.3375. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Ravanat J. L., Turesky R. J., Gremaud E., Trudel L. J., Stadler R. H. Determination of 8-oxoguanine in DNA by gas chromatography--mass spectrometry and HPLC--electrochemical detection: overestimation of the background level of the oxidized base by the gas chromatography--mass spectrometry assay. Chem Res Toxicol. 1995 Dec;8(8):1039–1045. doi: 10.1021/tx00050a007. [DOI] [PubMed] [Google Scholar]
  21. Richter C., Park J. W., Ames B. N. Normal oxidative damage to mitochondrial and nuclear DNA is extensive. Proc Natl Acad Sci U S A. 1988 Sep;85(17):6465–6467. doi: 10.1073/pnas.85.17.6465. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Shibutani S., Takeshita M., Grollman A. P. Insertion of specific bases during DNA synthesis past the oxidation-damaged base 8-oxodG. Nature. 1991 Jan 31;349(6308):431–434. doi: 10.1038/349431a0. [DOI] [PubMed] [Google Scholar]
  23. Shigenaga M. K., Aboujaoude E. N., Chen Q., Ames B. N. Assays of oxidative DNA damage biomarkers 8-oxo-2'-deoxyguanosine and 8-oxoguanine in nuclear DNA and biological fluids by high-performance liquid chromatography with electrochemical detection. Methods Enzymol. 1994;234:16–33. doi: 10.1016/0076-6879(94)34073-0. [DOI] [PubMed] [Google Scholar]
  24. Singh N. P., McCoy M. T., Tice R. R., Schneider E. L. A simple technique for quantitation of low levels of DNA damage in individual cells. Exp Cell Res. 1988 Mar;175(1):184–191. doi: 10.1016/0014-4827(88)90265-0. [DOI] [PubMed] [Google Scholar]
  25. Steinmetz K. A., Potter J. D. Vegetables, fruit, and cancer. I. Epidemiology. Cancer Causes Control. 1991 Sep;2(5):325–357. doi: 10.1007/BF00051672. [DOI] [PubMed] [Google Scholar]
  26. Takeuchi T., Nakajima M., Ohta Y., Mure K., Takeshita T., Morimoto K. Evaluation of 8-hydroxydeoxyguanosine, a typical oxidative DNA damage, in human leukocytes. Carcinogenesis. 1994 Aug;15(8):1519–1523. doi: 10.1093/carcin/15.8.1519. [DOI] [PubMed] [Google Scholar]
  27. Wilson V. L., Taffe B. G., Shields P. G., Povey A. C., Harris C. C. Detection and quantification of 8-hydroxydeoxyguanosine adducts in peripheral blood of people exposed to ionizing radiation. Environ Health Perspect. 1993 Mar;99:261–263. doi: 10.1289/ehp.9399261. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. de Kok T. M., ten Vaarwerk F., Zwingman I., van Maanen J. M., Kleinjans J. C. Peroxidation of linoleic, arachidonic and oleic acid in relation to the induction of oxidative DNA damage and cytogenetic effects. Carcinogenesis. 1994 Jul;15(7):1399–1404. doi: 10.1093/carcin/15.7.1399. [DOI] [PubMed] [Google Scholar]

Articles from Environmental Health Perspectives are provided here courtesy of National Institute of Environmental Health Sciences

RESOURCES