Skip to main content
Genetics logoLink to Genetics
. 2004 Jan;166(1):555–563. doi: 10.1534/genetics.166.1.555

Estimating effective population size or mutation rate with microsatellites.

Hongyan Xu 1, Yun-Xin Fu 1
PMCID: PMC1470688  PMID: 15020444

Abstract

Microsatellites are short tandem repeats that are widely dispersed among eukaryotic genomes. Many of them are highly polymorphic; they have been used widely in genetic studies. Statistical properties of all measures of genetic variation at microsatellites critically depend upon the composite parameter theta = 4Nmicro, where N is the effective population size and micro is mutation rate per locus per generation. Since mutation leads to expansion or contraction of a repeat number in a stepwise fashion, the stepwise mutation model has been widely used to study the dynamics of these loci. We developed an estimator of theta, theta; (F), on the basis of sample homozygosity under the single-step stepwise mutation model. The estimator is unbiased and is much more efficient than the variance-based estimator under the single-step stepwise mutation model. It also has smaller bias and mean square error (MSE) than the variance-based estimator when the mutation follows the multistep generalized stepwise mutation model. Compared with the maximum-likelihood estimator theta; (L) by, theta; (F) has less bias and smaller MSE in general. theta; (L) has a slight advantage when theta is small, but in such a situation the bias in theta; (L) may be more of a concern.

Full Text

The Full Text of this article is available as a PDF (96.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Chakraborty R., Kimmel M., Stivers D. N., Davison L. J., Deka R. Relative mutation rates at di-, tri-, and tetranucleotide microsatellite loci. Proc Natl Acad Sci U S A. 1997 Feb 4;94(3):1041–1046. doi: 10.1073/pnas.94.3.1041. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Chakraborty R., Weiss K. M. Genetic variation of the mitochondrial DNA genome in American Indians is at mutation-drift equilibrium. Am J Phys Anthropol. 1991 Dec;86(4):497–506. doi: 10.1002/ajpa.1330860405. [DOI] [PubMed] [Google Scholar]
  3. Cheung K. H., Osier M. V., Kidd J. R., Pakstis A. J., Miller P. L., Kidd K. K. ALFRED: an allele frequency database for diverse populations and DNA polymorphisms. Nucleic Acids Res. 2000 Jan 1;28(1):361–363. doi: 10.1093/nar/28.1.361. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Deka R., Guangyun S., Smelser D., Zhong Y., Kimmel M., Chakraborty R. Rate and directionality of mutations and effects of allele size constraints at anonymous, gene-associated, and disease-causing trinucleotide loci. Mol Biol Evol. 1999 Sep;16(9):1166–1177. doi: 10.1093/oxfordjournals.molbev.a026207. [DOI] [PubMed] [Google Scholar]
  5. Di Rienzo A., Peterson A. C., Garza J. C., Valdes A. M., Slatkin M., Freimer N. B. Mutational processes of simple-sequence repeat loci in human populations. Proc Natl Acad Sci U S A. 1994 Apr 12;91(8):3166–3170. doi: 10.1073/pnas.91.8.3166. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Fu Y. X., Chakraborty R. Simultaneous estimation of all the parameters of a stepwise mutation model. Genetics. 1998 Sep;150(1):487–497. doi: 10.1093/genetics/150.1.487. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Jeffreys A. J., Tamaki K., MacLeod A., Monckton D. G., Neil D. L., Armour J. A. Complex gene conversion events in germline mutation at human minisatellites. Nat Genet. 1994 Feb;6(2):136–145. doi: 10.1038/ng0294-136. [DOI] [PubMed] [Google Scholar]
  8. Kimmel M., Chakraborty R. Measures of variation at DNA repeat loci under a general stepwise mutation model. Theor Popul Biol. 1996 Dec;50(3):345–367. doi: 10.1006/tpbi.1996.0035. [DOI] [PubMed] [Google Scholar]
  9. Kimmel M., Chakraborty R., Stivers D. N., Deka R. Dynamics of repeat polymorphisms under a forward-backward mutation model: within- and between-population variability at microsatellite loci. Genetics. 1996 May;143(1):549–555. doi: 10.1093/genetics/143.1.549. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Nielsen R. A likelihood approach to populations samples of microsatellite alleles. Genetics. 1997 Jun;146(2):711–716. doi: 10.1093/genetics/146.2.711. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Ohta T., Kimura M. A model of mutation appropriate to estimate the number of electrophoretically detectable alleles in a finite population. Genet Res. 1973 Oct;22(2):201–204. doi: 10.1017/s0016672300012994. [DOI] [PubMed] [Google Scholar]
  12. Shriver M. D., Jin L., Chakraborty R., Boerwinkle E. VNTR allele frequency distributions under the stepwise mutation model: a computer simulation approach. Genetics. 1993 Jul;134(3):983–993. doi: 10.1093/genetics/134.3.983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Tautz D. Notes on the definition and nomenclature of tandemly repetitive DNA sequences. EXS. 1993;67:21–28. doi: 10.1007/978-3-0348-8583-6_2. [DOI] [PubMed] [Google Scholar]
  14. Weber J. L., Wong C. Mutation of human short tandem repeats. Hum Mol Genet. 1993 Aug;2(8):1123–1128. doi: 10.1093/hmg/2.8.1123. [DOI] [PubMed] [Google Scholar]
  15. Wehrhahn C. F. The evolution of selectively similar electrophoretically detectable alleles in finite natural populations. Genetics. 1975 Jun;80(2):375–394. doi: 10.1093/genetics/80.2.375. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Zhivotovsky L. A., Feldman M. W. Microsatellite variability and genetic distances. Proc Natl Acad Sci U S A. 1995 Dec 5;92(25):11549–11552. doi: 10.1073/pnas.92.25.11549. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Zouros E. Mutation rates, population sizes and amounts of electrophoretic variation of enzyme loci in natural populations. Genetics. 1979 Jun;92(2):623–646. doi: 10.1093/genetics/92.2.623. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES