Skip to main content
Genetics logoLink to Genetics
. 2004 Jan;166(1):565–579. doi: 10.1534/genetics.166.1.565

The effect of genetic conflict on genomic imprinting and modification of expression at a sex-linked locus.

Hamish G Spencer 1, Marcus W Feldman 1, Andrew G Clark 1, Anton E Weisstein 1
PMCID: PMC1470692  PMID: 15020445

Abstract

We examine how genomic imprinting may have evolved at an X-linked locus, using six diallelic models of selection in which one allele is imprintable and the other is not. Selection pressures are generated by genetic conflict between mothers and their offspring. The various models describe cases of maternal and paternal inactivation, in which females may be monogamous or bigamous. When inactivation is maternal, we examine the situations in which only female offspring exhibit imprinting as well as when both sexes do. We compare our results to those previously obtained for an autosomal locus and to four models in which a dominant modifier of biallelic expression is subjected to the same selection pressures. We find that, in accord with verbal predictions, maternal inactivation of growth enhancers and paternal inactivation of growth inhibitors are more likely than imprinting in the respective opposite directions, although these latter outcomes are possible for certain parameter combinations. The expected outcomes are easier to evolve than the same outcomes for autosomal loci, contradicting the available evidence concerning the direction of imprinting on mammalian sex chromosomes. In most of our models stable polymorphism of imprinting status is possible, a behavior not predicted by verbal accounts.

Full Text

The Full Text of this article is available as a PDF (147.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alleman M., Doctor J. Genomic imprinting in plants: observations and evolutionary implications. Plant Mol Biol. 2000 Jun;43(2-3):147–161. doi: 10.1023/a:1006419025155. [DOI] [PubMed] [Google Scholar]
  2. Anderson C. L., Brown C. J. Polymorphic X-chromosome inactivation of the human TIMP1 gene. Am J Hum Genet. 1999 Sep;65(3):699–708. doi: 10.1086/302556. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Barlow D. P. Gametic imprinting in mammals. Science. 1995 Dec 8;270(5242):1610–1613. doi: 10.1126/science.270.5242.1610. [DOI] [PubMed] [Google Scholar]
  4. Bartolomei M. S., Tilghman S. M. Genomic imprinting in mammals. Annu Rev Genet. 1997;31:493–525. doi: 10.1146/annurev.genet.31.1.493. [DOI] [PubMed] [Google Scholar]
  5. Bunzel R., Blümcke I., Cichon S., Normann S., Schramm J., Propping P., Nöthen M. M. Polymorphic imprinting of the serotonin-2A (5-HT2A) receptor gene in human adult brain. Brain Res Mol Brain Res. 1998 Aug 15;59(1):90–92. doi: 10.1016/s0169-328x(98)00146-6. [DOI] [PubMed] [Google Scholar]
  6. Carrel L., Willard H. F. Heterogeneous gene expression from the inactive X chromosome: an X-linked gene that escapes X inactivation in some human cell lines but is inactivated in others. Proc Natl Acad Sci U S A. 1999 Jun 22;96(13):7364–7369. doi: 10.1073/pnas.96.13.7364. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Davis G. H., Dodds K. G., Wheeler R., Jay N. P. Evidence that an imprinted gene on the X chromosome increases ovulation rate in sheep. Biol Reprod. 2001 Jan;64(1):216–221. doi: 10.1095/biolreprod64.1.216. [DOI] [PubMed] [Google Scholar]
  8. DeChiara T. M., Robertson E. J., Efstratiadis A. Parental imprinting of the mouse insulin-like growth factor II gene. Cell. 1991 Feb 22;64(4):849–859. doi: 10.1016/0092-8674(91)90513-x. [DOI] [PubMed] [Google Scholar]
  9. Franklin G. C., Adam G. I., Ohlsson R. Genomic imprinting and mammalian development. Placenta. 1996 Jan;17(1):3–14. doi: 10.1016/s0143-4004(05)80638-1. [DOI] [PubMed] [Google Scholar]
  10. Giannoukakis N., Deal C., Paquette J., Goodyer C. G., Polychronakos C. Parental genomic imprinting of the human IGF2 gene. Nat Genet. 1993 May;4(1):98–101. doi: 10.1038/ng0593-98. [DOI] [PubMed] [Google Scholar]
  11. Haig D., Graham C. Genomic imprinting and the strange case of the insulin-like growth factor II receptor. Cell. 1991 Mar 22;64(6):1045–1046. doi: 10.1016/0092-8674(91)90256-x. [DOI] [PubMed] [Google Scholar]
  12. Hoekstra H. E., Nachman M. W. Different genes underlie adaptive melanism in different populations of rock pocket mice. Mol Ecol. 2003 May;12(5):1185–1194. doi: 10.1046/j.1365-294x.2003.01788.x. [DOI] [PubMed] [Google Scholar]
  13. Hurst L. D. Is multiple paternity necessary for the evolution of genomic imprinting? Genetics. 1999 Sep;153(1):509–512. doi: 10.1093/genetics/153.1.509. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hurst L. D., McVean G. T. Do we understand the evolution of genomic imprinting? Curr Opin Genet Dev. 1998 Dec;8(6):701–708. doi: 10.1016/s0959-437x(98)80040-3. [DOI] [PubMed] [Google Scholar]
  15. Iwasa Y., Pomiankowski A. Sex specific X chromosome expression caused by genomic imprinting. J Theor Biol. 1999 Apr 21;197(4):487–495. doi: 10.1006/jtbi.1998.0888. [DOI] [PubMed] [Google Scholar]
  16. Iwasa Y., Pomiankowski A. The evolution of X-linked genomic imprinting. Genetics. 2001 Aug;158(4):1801–1809. doi: 10.1093/genetics/158.4.1801. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Jamieson R. V., Tan S. S., Tam P. P. Retarded postimplantation development of X0 mouse embryos: impact of the parental origin of the monosomic X chromosome. Dev Biol. 1998 Sep 1;201(1):13–25. doi: 10.1006/dbio.1998.8972. [DOI] [PubMed] [Google Scholar]
  18. Jinno Y., Yun K., Nishiwaki K., Kubota T., Ogawa O., Reeve A. E., Niikawa N. Mosaic and polymorphic imprinting of the WT1 gene in humans. Nat Genet. 1994 Mar;6(3):305–309. doi: 10.1038/ng0394-305. [DOI] [PubMed] [Google Scholar]
  19. John R. M., Surani M. A. Imprinted genes and regulation of gene expression by epigenetic inheritance. Curr Opin Cell Biol. 1996 Jun;8(3):348–353. doi: 10.1016/s0955-0674(96)80008-1. [DOI] [PubMed] [Google Scholar]
  20. McLaren R. J., Montgomery G. W. Genomic imprinting of the insulin-like growth factor 2 gene in sheep. Mamm Genome. 1999 Jun;10(6):588–591. doi: 10.1007/s003359901050. [DOI] [PubMed] [Google Scholar]
  21. Mochizuki A., Takeda Y., Iwasa Y. The evolution of genomic imprinting. Genetics. 1996 Nov;144(3):1283–1295. doi: 10.1093/genetics/144.3.1283. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Moore T., Haig D. Genomic imprinting in mammalian development: a parental tug-of-war. Trends Genet. 1991 Feb;7(2):45–49. doi: 10.1016/0168-9525(91)90230-N. [DOI] [PubMed] [Google Scholar]
  23. Morison I. M., Paton C. J., Cleverley S. D. The imprinted gene and parent-of-origin effect database. Nucleic Acids Res. 2001 Jan 1;29(1):275–276. doi: 10.1093/nar/29.1.275. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Nezer C., Moreau L., Brouwers B., Coppieters W., Detilleux J., Hanset R., Karim L., Kvasz A., Leroy P., Georges M. An imprinted QTL with major effect on muscle mass and fat deposition maps to the IGF2 locus in pigs. Nat Genet. 1999 Feb;21(2):155–156. doi: 10.1038/5935. [DOI] [PubMed] [Google Scholar]
  25. O'Neill M. J., Ingram R. S., Vrana P. B., Tilghman S. M. Allelic expression of IGF2 in marsupials and birds. Dev Genes Evol. 2000 Jan;210(1):18–20. doi: 10.1007/pl00008182. [DOI] [PubMed] [Google Scholar]
  26. Otto S. P., Goldstein D. B. Recombination and the evolution of diploidy. Genetics. 1992 Jul;131(3):745–751. doi: 10.1093/genetics/131.3.745. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Pedone P. V., Cosma M. P., Ungaro P., Colantuoni V., Bruni C. B., Zarrilli R., Riccio A. Parental imprinting of rat insulin-like growth factor II gene promoters is coordinately regulated. J Biol Chem. 1994 Sep 30;269(39):23970–23975. [PubMed] [Google Scholar]
  28. Spencer H. G., Marks R. W. The maintenance of single-locus polymorphism. I. Numerical studies of a viability selection model. Genetics. 1988 Oct;120(2):605–613. doi: 10.1093/genetics/120.2.605. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Spencer H. G. Population genetics and evolution of genomic imprinting. Annu Rev Genet. 2000;34:457–477. doi: 10.1146/annurev.genet.34.1.457. [DOI] [PubMed] [Google Scholar]
  30. Vrana P. B., Guan X. J., Ingram R. S., Tilghman S. M. Genomic imprinting is disrupted in interspecific Peromyscus hybrids. Nat Genet. 1998 Dec;20(4):362–365. doi: 10.1038/3833. [DOI] [PubMed] [Google Scholar]
  31. Weisstein Anton E., Feldman Marcus W., Spencer Hamish G. Evolutionary genetic models of the ovarian time bomb hypothesis for the evolution of genomic imprinting. Genetics. 2002 Sep;162(1):425–439. doi: 10.1093/genetics/162.1.425. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES