Abstract
Establishing durable disease resistance in agricultural crops, where much of the plant defense is provided through effector-R gene interactions, is complicated by the ability of pathogens to overcome R gene resistance by losing the corresponding effector gene. Many proposed methods to maintain disease resistance in the field depend on the idea that effector gene loss results in a fitness cost to the pathogen. In this article we test for fitness costs of effector gene function loss. We created directed knockouts of up to four effector genes from the bacterial plant pathogen Xanthomonas axonopodis pv. vesicatoria (Xav) and examined the effect of the loss of a functional gene product on several important fitness parameters in the field. These traits included transmission, lesion development, and epiphytic survival. We found that the products of all four effector genes had significant and often additive effects on fitness traits. Additional greenhouse tests revealed costs of effector gene loss on in planta growth and further showed that the effects on lesion development were separable from the effects on growth. Observable fitness effects of the three plasmid-borne effector genes were dependent upon the loss of functional avrBs2, indicating that complex functional interactions exist among effector genes with Xav.
Full Text
The Full Text of this article is available as a PDF (204.8 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Abramovitch Robert B., Kim Young-Jin, Chen Shaorong, Dickman Martin B., Martin Gregory B. Pseudomonas type III effector AvrPtoB induces plant disease susceptibility by inhibition of host programmed cell death. EMBO J. 2003 Jan 2;22(1):60–69. doi: 10.1093/emboj/cdg006. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Alexeyev M. F., Shokolenko I. N., Croughan T. P. New mini-Tn5 derivatives for insertion mutagenesis and genetic engineering in gram-negative bacteria. Can J Microbiol. 1995 Nov;41(11):1053–1055. doi: 10.1139/m95-147. [DOI] [PubMed] [Google Scholar]
- Axtell Michael J., Staskawicz Brian J. Initiation of RPS2-specified disease resistance in Arabidopsis is coupled to the AvrRpt2-directed elimination of RIN4. Cell. 2003 Feb 7;112(3):369–377. doi: 10.1016/s0092-8674(03)00036-9. [DOI] [PubMed] [Google Scholar]
- Bai J., Choi S. H., Ponciano G., Leung H., Leach J. E. Xanthomonas oryzae pv. oryzae avirulence genes contribute differently and specifically to pathogen aggressiveness. Mol Plant Microbe Interact. 2000 Dec;13(12):1322–1329. doi: 10.1094/MPMI.2000.13.12.1322. [DOI] [PubMed] [Google Scholar]
- Ballvora A., Pierre M., van den Ackerveken G., Schornack S., Rossier O., Ganal M., Lahaye T., Bonas U. Genetic mapping and functional analysis of the tomato Bs4 locus governing recognition of the Xanthomonas campestris pv. vesicatoria AvrBs4 protein. Mol Plant Microbe Interact. 2001 May;14(5):629–638. doi: 10.1094/MPMI.2001.14.5.629. [DOI] [PubMed] [Google Scholar]
- Bonas U., Conrads-Strauch J., Balbo I. Resistance in tomato to Xanthomonas campestris pv vesicatoria is determined by alleles of the pepper-specific avirulence gene avrBs3. Mol Gen Genet. 1993 Apr;238(1-2):261–269. doi: 10.1007/BF00279555. [DOI] [PubMed] [Google Scholar]
- Bonas U., Stall R. E., Staskawicz B. Genetic and structural characterization of the avirulence gene avrBs3 from Xanthomonas campestris pv. vesicatoria. Mol Gen Genet. 1989 Jul;218(1):127–136. doi: 10.1007/BF00330575. [DOI] [PubMed] [Google Scholar]
- Bonas Ulla, Lahaye Thomas. Plant disease resistance triggered by pathogen-derived molecules: refined models of specific recognition. Curr Opin Microbiol. 2002 Feb;5(1):44–50. doi: 10.1016/s1369-5274(02)00284-9. [DOI] [PubMed] [Google Scholar]
- Brown James K. M. Yield penalties of disease resistance in crops. Curr Opin Plant Biol. 2002 Aug;5(4):339–344. doi: 10.1016/s1369-5266(02)00270-4. [DOI] [PubMed] [Google Scholar]
- Casper-Lindley Catharina, Dahlbeck Douglas, Clark Eszter T., Staskawicz Brian J. Direct biochemical evidence for type III secretion-dependent translocation of the AvrBs2 effector protein into plant cells. Proc Natl Acad Sci U S A. 2002 Jun 11;99(12):8336–8341. doi: 10.1073/pnas.122220299. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chang J. H., Rathjen J. P., Bernal A. J., Staskawicz B. J., Michelmore R. W. avrPto enhances growth and necrosis caused by Pseudomonas syringae pv.tomato in tomato lines lacking either Pto or Prf. Mol Plant Microbe Interact. 2000 May;13(5):568–571. doi: 10.1094/MPMI.2000.13.5.568. [DOI] [PubMed] [Google Scholar]
- Collmer A., Badel J. L., Charkowski A. O., Deng W. L., Fouts D. E., Ramos A. R., Rehm A. H., Anderson D. M., Schneewind O., van Dijk K. Pseudomonas syringae Hrp type III secretion system and effector proteins. Proc Natl Acad Sci U S A. 2000 Aug 1;97(16):8770–8777. doi: 10.1073/pnas.97.16.8770. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dangl J. L., Jones J. D. Plant pathogens and integrated defence responses to infection. Nature. 2001 Jun 14;411(6839):826–833. doi: 10.1038/35081161. [DOI] [PubMed] [Google Scholar]
- Frank S. A. Models of plant-pathogen coevolution. Trends Genet. 1992 Jun;8(6):213–219. doi: 10.1016/0168-9525(92)90236-w. [DOI] [PubMed] [Google Scholar]
- Gassmann W., Dahlbeck D., Chesnokova O., Minsavage G. V., Jones J. B., Staskawicz B. J. Molecular evolution of virulence in natural field strains of Xanthomonas campestris pv. vesicatoria. J Bacteriol. 2000 Dec;182(24):7053–7059. doi: 10.1128/jb.182.24.7053-7059.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Guttman D. S., Greenberg J. T. Functional analysis of the type III effectors AvrRpt2 and AvrRpm1 of Pseudomonas syringae with the use of a single-copy genomic integration system. Mol Plant Microbe Interact. 2001 Feb;14(2):145–155. doi: 10.1094/MPMI.2001.14.2.145. [DOI] [PubMed] [Google Scholar]
- Hauck Paula, Thilmony Roger, He Sheng Yang. A Pseudomonas syringae type III effector suppresses cell wall-based extracellular defense in susceptible Arabidopsis plants. Proc Natl Acad Sci U S A. 2003 Jun 19;100(14):8577–8582. doi: 10.1073/pnas.1431173100. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hirano S. S., Charkowski A. O., Collmer A., Willis D. K., Upper C. D. Role of the Hrp type III protein secretion system in growth of Pseudomonas syringae pv. syringae B728a on host plants in the field. Proc Natl Acad Sci U S A. 1999 Aug 17;96(17):9851–9856. doi: 10.1073/pnas.96.17.9851. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hirano S. S., Nordheim E. V., Arny D. C., Upper C. D. Lognormal distribution of epiphytic bacterial populations on leaf surfaces. Appl Environ Microbiol. 1982 Sep;44(3):695–700. doi: 10.1128/aem.44.3.695-700.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hirano S. S., Upper C. D. Dynamics, spread, and persistence of a single genotype of Pseudomonas syringae relative to those of its conspecifics on populations of snap bean leaflets. Appl Environ Microbiol. 1993 Apr;59(4):1082–1091. doi: 10.1128/aem.59.4.1082-1091.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jackson R. W., Athanassopoulos E., Tsiamis G., Mansfield J. W., Sesma A., Arnold D. L., Gibbon M. J., Murillo J., Taylor J. D., Vivian A. Identification of a pathogenicity island, which contains genes for virulence and avirulence, on a large native plasmid in the bean pathogen Pseudomonas syringae pathovar phaseolicola. Proc Natl Acad Sci U S A. 1999 Sep 14;96(19):10875–10880. doi: 10.1073/pnas.96.19.10875. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Laugé R., Joosten M. H., Haanstra J. P., Goodwin P. H., Lindhout P., De Wit P. J. Successful search for a resistance gene in tomato targeted against a virulence factor of a fungal pathogen. Proc Natl Acad Sci U S A. 1998 Jul 21;95(15):9014–9018. doi: 10.1073/pnas.95.15.9014. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Leach J. E., Vera Cruz C. M., Bai J., Leung H. Pathogen fitness penalty as a predictor of durability of disease resistance genes. Annu Rev Phytopathol. 2001;39:187–224. doi: 10.1146/annurev.phyto.39.1.187. [DOI] [PubMed] [Google Scholar]
- Mackey David, Belkhadir Youssef, Alonso Jose M., Ecker Joseph R., Dangl Jeffery L. Arabidopsis RIN4 is a target of the type III virulence effector AvrRpt2 and modulates RPS2-mediated resistance. Cell. 2003 Feb 7;112(3):379–389. doi: 10.1016/s0092-8674(03)00040-0. [DOI] [PubMed] [Google Scholar]
- Marois Eric, Van den Ackerveken Guido, Bonas Ulla. The xanthomonas type III effector protein AvrBs3 modulates plant gene expression and induces cell hypertrophy in the susceptible host. Mol Plant Microbe Interact. 2002 Jul;15(7):637–646. doi: 10.1094/MPMI.2002.15.7.637. [DOI] [PubMed] [Google Scholar]
- McCallum H., Barlow N., Hone J. How should pathogen transmission be modelled? Trends Ecol Evol. 2001 Jun 1;16(6):295–300. doi: 10.1016/s0169-5347(01)02144-9. [DOI] [PubMed] [Google Scholar]
- McDonald Bruce A., Linde Celeste. Pathogen population genetics, evolutionary potential, and durable resistance. Annu Rev Phytopathol. 2002 Feb 20;40:349–379. doi: 10.1146/annurev.phyto.40.120501.101443. [DOI] [PubMed] [Google Scholar]
- Mundt C. C. Use of multiline cultivars and cultivar mixtures for disease management. Annu Rev Phytopathol. 2002 Feb 20;40:381–410. doi: 10.1146/annurev.phyto.40.011402.113723. [DOI] [PubMed] [Google Scholar]
- Ritter C., Dangl J. L. The avrRpm1 gene of Pseudomonas syringae pv. maculicola is required for virulence on Arabidopsis. Mol Plant Microbe Interact. 1995 May-Jun;8(3):444–453. doi: 10.1094/mpmi-8-0444. [DOI] [PubMed] [Google Scholar]
- Roine E., Wei W., Yuan J., Nurmiaho-Lassila E. L., Kalkkinen N., Romantschuk M., He S. Y. Hrp pilus: an hrp-dependent bacterial surface appendage produced by Pseudomonas syringae pv. tomato DC3000. Proc Natl Acad Sci U S A. 1997 Apr 1;94(7):3459–3464. doi: 10.1073/pnas.94.7.3459. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ronald P. C., Staskawicz B. J. The avirulence gene avrBs1 from Xanthomonas campestris pv. vesicatoria encodes a 50-kD protein. Mol Plant Microbe Interact. 1988 May-Jun;1(5):191–198. [PubMed] [Google Scholar]
- Shan L., He P., Zhou J. M., Tang X. A cluster of mutations disrupt the avirulence but not the virulence function of AvrPto. Mol Plant Microbe Interact. 2000 Jun;13(6):592–598. doi: 10.1094/MPMI.2000.13.6.592. [DOI] [PubMed] [Google Scholar]
- Stahl E. A., Dwyer G., Mauricio R., Kreitman M., Bergelson J. Dynamics of disease resistance polymorphism at the Rpm1 locus of Arabidopsis. Nature. 1999 Aug 12;400(6745):667–671. doi: 10.1038/23260. [DOI] [PubMed] [Google Scholar]
- Stuiver M. H., Custers J. H. Engineering disease resistance in plants. Nature. 2001 Jun 14;411(6839):865–868. doi: 10.1038/35081200. [DOI] [PubMed] [Google Scholar]
- Swords K. M., Dahlbeck D., Kearney B., Roy M., Staskawicz B. J. Spontaneous and induced mutations in a single open reading frame alter both virulence and avirulence in Xanthomonas campestris pv. vesicatoria avrBs2. J Bacteriol. 1996 Aug;178(15):4661–4669. doi: 10.1128/jb.178.15.4661-4669.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tai T. H., Dahlbeck D., Clark E. T., Gajiwala P., Pasion R., Whalen M. C., Stall R. E., Staskawicz B. J. Expression of the Bs2 pepper gene confers resistance to bacterial spot disease in tomato. Proc Natl Acad Sci U S A. 1999 Nov 23;96(24):14153–14158. doi: 10.1073/pnas.96.24.14153. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thrall Peter H., Burdon Jeremy J. Evolution of virulence in a plant host-pathogen metapopulation. Science. 2003 Mar 14;299(5613):1735–1737. doi: 10.1126/science.1080070. [DOI] [PubMed] [Google Scholar]
- Tsiamis G., Mansfield J. W., Hockenhull R., Jackson R. W., Sesma A., Athanassopoulos E., Bennett M. A., Stevens C., Vivian A., Taylor J. D. Cultivar-specific avirulence and virulence functions assigned to avrPphF in Pseudomonas syringae pv. phaseolicola, the cause of bean halo-blight disease. EMBO J. 2000 Jul 3;19(13):3204–3214. doi: 10.1093/emboj/19.13.3204. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Van den Ackerveken G., Marois E., Bonas U. Recognition of the bacterial avirulence protein AvrBs3 occurs inside the host plant cell. Cell. 1996 Dec 27;87(7):1307–1316. doi: 10.1016/s0092-8674(00)81825-5. [DOI] [PubMed] [Google Scholar]
- Vera Cruz C. M., Bai J., Ona I., Leung H., Nelson R. J., Mew T. W., Leach J. E. Predicting durability of a disease resistance gene based on an assessment of the fitness loss and epidemiological consequences of avirulence gene mutation. Proc Natl Acad Sci U S A. 2000 Dec 5;97(25):13500–13505. doi: 10.1073/pnas.250271997. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wickner S., Maurizi M. R., Gottesman S. Posttranslational quality control: folding, refolding, and degrading proteins. Science. 1999 Dec 3;286(5446):1888–1893. doi: 10.1126/science.286.5446.1888. [DOI] [PubMed] [Google Scholar]
- Yang Y., Gabriel D. W. Xanthomonas avirulence/pathogenicity gene family encodes functional plant nuclear targeting signals. Mol Plant Microbe Interact. 1995 Jul-Aug;8(4):627–631. doi: 10.1094/mpmi-8-0627. [DOI] [PubMed] [Google Scholar]
- Zhu W., Yang B., Chittoor J. M., Johnson L. B., White F. F. AvrXa10 contains an acidic transcriptional activation domain in the functionally conserved C terminus. Mol Plant Microbe Interact. 1998 Aug;11(8):824–832. doi: 10.1094/MPMI.1998.11.8.824. [DOI] [PubMed] [Google Scholar]
- Zhu Y., Chen H., Fan J., Wang Y., Li Y., Chen J., Fan J., Yang S., Hu L., Leung H. Genetic diversity and disease control in rice. Nature. 2000 Aug 17;406(6797):718–722. doi: 10.1038/35021046. [DOI] [PubMed] [Google Scholar]