Skip to main content
Genetics logoLink to Genetics
. 2004 May;167(1):301–309. doi: 10.1534/genetics.167.1.301

Genetic mapping of sexual isolation between E and Z pheromone strains of the european corn Borer (Ostrinia nubilalis).

Erik B Dopman 1, Steven M Bogdanowicz 1, Richard G Harrison 1
PMCID: PMC1470852  PMID: 15166156

Abstract

The E and Z pheromone strains of the European corn borer (ECB) provide an exceptional model system for examining the genetic basis of sexual isolation. Differences at two major genes account for variation in female pheromone production and male behavioral response, components of the pheromone communication system known to be important for mate recognition and mate choice. Strains of ECB are morphologically indistinguishable, and surveys of allozyme and DNA sequence variation have revealed significant allele frequency differences at only a single sex-linked locus, Tpi. Here we present a detailed genetic linkage map of ECB using AFLP and microsatellite markers and map the factors responsible for pheromone production (Pher) and male response (Resp). Our map covers 1697 cM and identifies all 31 linkage groups in ECB. Both Resp and Tpi map to the Z (sex) chromosome, but the distance between these markers (>20 cM) argues against the hypothesis that patterns of variation at Tpi are explained by tight linkage to this "speciation gene." However, we show, through analysis of marker density, that Tpi is located in a region of low recombination and suggest that a second Z-linked reproductive barrier could be responsible for the origin and/or persistence of differentiation at Tpi.

Full Text

The Full Text of this article is available as a PDF (181.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allen Orr H. The genetics of species differences. Trends Ecol Evol. 2001 Jul 1;16(7):343–350. doi: 10.1016/s0169-5347(01)02167-x. [DOI] [PubMed] [Google Scholar]
  2. Aquadro C. F. Insights into the evolutionary process from patterns of DNA sequence variability. Curr Opin Genet Dev. 1997 Dec;7(6):835–840. doi: 10.1016/s0959-437x(97)80048-2. [DOI] [PubMed] [Google Scholar]
  3. Butlin R., Ritchie M. G. Evolutionary biology. Searching for speciation genes. Nature. 2001 Jul 5;412(6842):31–33. doi: 10.1038/35083669. [DOI] [PubMed] [Google Scholar]
  4. Cardé R. T., Roelofs W. L., Harrison R. G., Vawter A. T., Brussard P. F., Mutuura A., Munroe E. European corn borer: pheromone polymorphism or sibling species? Science. 1978 Feb 3;199(4328):555–556. doi: 10.1126/science.199.4328.555. [DOI] [PubMed] [Google Scholar]
  5. Coyne J. A., Orr H. A. The evolutionary genetics of speciation. Philos Trans R Soc Lond B Biol Sci. 1998 Feb 28;353(1366):287–305. doi: 10.1098/rstb.1998.0210. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Hamilton M. B., Pincus E. L., Di Fiore A., Fleischer R. C. Universal linker and ligation procedures for construction of genomic DNA libraries enriched for microsatellites. Biotechniques. 1999 Sep;27(3):500-2, 504-7. doi: 10.2144/99273st03. [DOI] [PubMed] [Google Scholar]
  7. Hawthorne D. J., Via S. Genetic linkage of ecological specialization and reproductive isolation in pea aphids. Nature. 2001 Aug 30;412(6850):904–907. doi: 10.1038/35091062. [DOI] [PubMed] [Google Scholar]
  8. Heckel D. G., Gahan L. J., Liu Y. B., Tabashnik B. E. Genetic mapping of resistance to Bacillus thuringiensis toxins in diamondback moth using biphasic linkage analysis. Proc Natl Acad Sci U S A. 1999 Jul 20;96(15):8373–8377. doi: 10.1073/pnas.96.15.8373. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Huang Yongping, Takanashi Takuma, Hoshizaki Sugihiko, Tatsuki Sadahiro, Ishikawa Yukio. Female sex pheromone polymorphism in adzuki bean borer, Ostrinia scapulalis, is similar to that in European corn borer, O. nubilalis. J Chem Ecol. 2002 Mar;28(3):533–539. doi: 10.1023/a:1014540011854. [DOI] [PubMed] [Google Scholar]
  10. Hunt G. J., Page R. E., Jr Linkage map of the honey bee, Apis mellifera, based on RAPD markers. Genetics. 1995 Mar;139(3):1371–1382. doi: 10.1093/genetics/139.3.1371. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Klun J. A., Chapman O. L., Mattes K. C., Wojtkowski P. W., Beroza M., Sonnet P. E. Insect sex pheromones: minor amount of opposite geometrical isomer critical to attraction. Science. 1973 Aug 17;181(4100):661–663. doi: 10.1126/science.181.4100.661. [DOI] [PubMed] [Google Scholar]
  12. Kraft T., Säll T., Magnusson-Rading I., Nilsson N. O., Halldén C. Positive correlation between recombination rates and levels of genetic variation in natural populations of sea beet (Beta vulgaris subsp. maritima). Genetics. 1998 Nov;150(3):1239–1244. doi: 10.1093/genetics/150.3.1239. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Lander E. S., Green P., Abrahamson J., Barlow A., Daly M. J., Lincoln S. E., Newberg L. A., Newburg L. MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics. 1987 Oct;1(2):174–181. doi: 10.1016/0888-7543(87)90010-3. [DOI] [PubMed] [Google Scholar]
  14. Lyon M. F. Distribution of crossing-over in mouse chromosomes. Genet Res. 1976 Dec;28(3):291–299. doi: 10.1017/s0016672300016980. [DOI] [PubMed] [Google Scholar]
  15. Marçon P. C., Taylor D. B., Mason C. E., Hellmich R. L., Siegfried B. D. Genetic similarity among pheromone and voltinism races of Ostrinia nubilalis (Hübner) (Lepidoptera: Crambidae). Insect Mol Biol. 1999 May;8(2):213–221. doi: 10.1046/j.1365-2583.1999.820213.x. [DOI] [PubMed] [Google Scholar]
  16. Nachman M. W., Churchill G. A. Heterogeneity in rates of recombination across the mouse genome. Genetics. 1996 Feb;142(2):537–548. doi: 10.1093/genetics/142.2.537. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Peichel C. L., Nereng K. S., Ohgi K. A., Cole B. L., Colosimo P. F., Buerkle C. A., Schluter D., Kingsley D. M. The genetic architecture of divergence between threespine stickleback species. Nature. 2001 Dec 20;414(6866):901–905. doi: 10.1038/414901a. [DOI] [PubMed] [Google Scholar]
  18. Presgraves Daven C., Balagopalan Lakshmi, Abmayr Susan M., Orr H. Allen. Adaptive evolution drives divergence of a hybrid inviability gene between two species of Drosophila. Nature. 2003 Jun 12;423(6941):715–719. doi: 10.1038/nature01679. [DOI] [PubMed] [Google Scholar]
  19. Rieseberg L. H., Whitton J., Gardner K. Hybrid zones and the genetic architecture of a barrier to gene flow between two sunflower species. Genetics. 1999 Jun;152(2):713–727. doi: 10.1093/genetics/152.2.713. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Roelofs W., Glover T., Tang X. H., Sreng I., Robbins P., Eckenrode C., Löfstedt C., Hansson B. S., Bengtsson B. O. Sex pheromone production and perception in European corn borer moths is determined by both autosomal and sex-linked genes. Proc Natl Acad Sci U S A. 1987 Nov;84(21):7585–7589. doi: 10.1073/pnas.84.21.7585. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Ting C. T., Tsaur S. C., Wu C. I. The phylogeny of closely related species as revealed by the genealogy of a speciation gene, Odysseus. Proc Natl Acad Sci U S A. 2000 May 9;97(10):5313–5316. doi: 10.1073/pnas.090541597. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Vos P., Hogers R., Bleeker M., Reijans M., van de Lee T., Hornes M., Frijters A., Pot J., Peleman J., Kuiper M. AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res. 1995 Nov 11;23(21):4407–4414. doi: 10.1093/nar/23.21.4407. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Willett C. S., Harrison R. G. Insights into genome differentiation: pheromone-binding protein variation and population history in the European corn borer (Ostrinia nubilalis). Genetics. 1999 Dec;153(4):1743–1751. doi: 10.1093/genetics/153.4.1743. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES