Skip to main content
Genetics logoLink to Genetics
. 2004 May;167(1):119–129. doi: 10.1534/genetics.167.1.119

A genetic selection for circadian output pathway mutations in Neurospora crassa.

Michael W Vitalini 1, Louis W Morgan 1, Irene J March 1, Deborah Bell-Pedersen 1
PMCID: PMC1470853  PMID: 15166141

Abstract

In most organisms, circadian oscillators regulate the daily rhythmic expression of clock-controlled genes (ccgs). However, little is known about the pathways between the circadian oscillator(s) and the ccgs. In Neurospora crassa, the frq, wc-1, and wc-2 genes encode components of the frq-oscillator. A functional frq-oscillator is required for rhythmic expression of the morning-specific ccg-1 and ccg-2 genes. In frq-null or wc-1 mutant strains, ccg-1 mRNA levels fluctuate near peak levels over the course of the day, whereas ccg-2 mRNA remains at trough levels. The simplest model that fits the above observations is that the frq-oscillator regulates a repressor of ccg-1 and an activator of ccg-2. We utilized a genetic selection for mutations that affect the regulation of ccg-1 and ccg-2 by the frq-oscillator. We find that there is at least one mutant strain, COP1-1 (circadian output pathway derived from ccg-1), that has altered expression of ccg-1 mRNA, but normal ccg-2 expression levels. However, the clock does not appear to simply regulate a repressor of ccg-1 and an activator of ccg-2 in two independent pathways, since in our selection we identified three mutant strains, COP1-2, COP1-3, and COP1-4, in which a single mutation in each strain affects the expression levels and rhythmicity of both ccg-1 and ccg-2.

Full Text

The Full Text of this article is available as a PDF (460.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aronson B. D., Johnson K. A., Dunlap J. C. Circadian clock locus frequency: protein encoded by a single open reading frame defines period length and temperature compensation. Proc Natl Acad Sci U S A. 1994 Aug 2;91(16):7683–7687. doi: 10.1073/pnas.91.16.7683. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Aronson B. D., Johnson K. A., Loros J. J., Dunlap J. C. Negative feedback defining a circadian clock: autoregulation of the clock gene frequency. Science. 1994 Mar 18;263(5153):1578–1584. doi: 10.1126/science.8128244. [DOI] [PubMed] [Google Scholar]
  3. Arpaia G., Loros J. J., Dunlap J. C., Morelli G., Macino G. Light induction of the clock-controlled gene ccg-1 is not transduced through the circadian clock in Neurospora crassa. Mol Gen Genet. 1995 Apr 20;247(2):157–163. doi: 10.1007/BF00705645. [DOI] [PubMed] [Google Scholar]
  4. Ballario P., Talora C., Galli D., Linden H., Macino G. Roles in dimerization and blue light photoresponse of the PAS and LOV domains of Neurospora crassa white collar proteins. Mol Microbiol. 1998 Aug;29(3):719–729. doi: 10.1046/j.1365-2958.1998.00955.x. [DOI] [PubMed] [Google Scholar]
  5. Bell-Pedersen D., Dunlap J. C., Loros J. J. Distinct cis-acting elements mediate clock, light, and developmental regulation of the Neurospora crassa eas (ccg-2) gene. Mol Cell Biol. 1996 Feb;16(2):513–521. doi: 10.1128/mcb.16.2.513. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bell-Pedersen D., Dunlap J. C., Loros J. J. The Neurospora circadian clock-controlled gene, ccg-2, is allelic to eas and encodes a fungal hydrophobin required for formation of the conidial rodlet layer. Genes Dev. 1992 Dec;6(12A):2382–2394. doi: 10.1101/gad.6.12a.2382. [DOI] [PubMed] [Google Scholar]
  7. Bell-Pedersen D., Lewis Z. A., Loros J. J., Dunlap J. C. The Neurospora circadian clock regulates a transcription factor that controls rhythmic expression of the output eas(ccg-2) gene. Mol Microbiol. 2001 Aug;41(4):897–909. doi: 10.1046/j.1365-2958.2001.02558.x. [DOI] [PubMed] [Google Scholar]
  8. Bell-Pedersen D., Shinohara M. L., Loros J. J., Dunlap J. C. Circadian clock-controlled genes isolated from Neurospora crassa are late night- to early morning-specific. Proc Natl Acad Sci U S A. 1996 Nov 12;93(23):13096–13101. doi: 10.1073/pnas.93.23.13096. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Bobrowicz Piotr, Pawlak Rebecca, Correa Alejandro, Bell-Pedersen Deborah, Ebbole Daniel J. The Neurospora crassa pheromone precursor genes are regulated by the mating type locus and the circadian clock. Mol Microbiol. 2002 Aug;45(3):795–804. doi: 10.1046/j.1365-2958.2002.03052.x. [DOI] [PubMed] [Google Scholar]
  10. Carattoli A., Kato E., Rodriguez-Franco M., Stuart W. D., Macino G. A chimeric light-regulated amino acid transport system allows the isolation of blue light regulator (blr) mutants of Neurospora crassa. Proc Natl Acad Sci U S A. 1995 Jul 3;92(14):6612–6616. doi: 10.1073/pnas.92.14.6612. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Chakraborty B. N., Patterson N. A., Kapoor M. An electroporation-based system for high-efficiency transformation of germinated conidia of filamentous fungi. Can J Microbiol. 1991 Nov;37(11):858–863. doi: 10.1139/m91-147. [DOI] [PubMed] [Google Scholar]
  12. Correa Alejandro, Lewis Zachary A., Greene Andrew V., March Irene J., Gomer Richard H., Bell-Pedersen Deborah. Multiple oscillators regulate circadian gene expression in Neurospora. Proc Natl Acad Sci U S A. 2003 Nov 3;100(23):13597–13602. doi: 10.1073/pnas.2233734100. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Denault D. L., Loros J. J., Dunlap J. C. WC-2 mediates WC-1-FRQ interaction within the PAS protein-linked circadian feedback loop of Neurospora. EMBO J. 2001 Jan 15;20(1-2):109–117. doi: 10.1093/emboj/20.1.109. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Dunlap J. C., Loros J. J., Liu Y., Crosthwaite S. K. Eukaryotic circadian systems: cycles in common. Genes Cells. 1999 Jan;4(1):1–10. doi: 10.1046/j.1365-2443.1999.00239.x. [DOI] [PubMed] [Google Scholar]
  15. Feldman J. F., Hoyle M. N. Isolation of circadian clock mutants of Neurospora crassa. Genetics. 1973 Dec;75(4):605–613. doi: 10.1093/genetics/75.4.605. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Froehlich Allan C., Liu Yi, Loros Jennifer J., Dunlap Jay C. White Collar-1, a circadian blue light photoreceptor, binding to the frequency promoter. Science. 2002 Jul 4;297(5582):815–819. doi: 10.1126/science.1073681. [DOI] [PubMed] [Google Scholar]
  17. Keesey J., Jr, Paukert J., Demoss J. A. Subunit structure of anthranilate synthase from Neurospora crassa: preparation and characterization of a protease-free form. Arch Biochem Biophys. 1981 Mar;207(1):103–109. doi: 10.1016/0003-9861(81)90014-x. [DOI] [PubMed] [Google Scholar]
  18. Lakin-Thomas P. L., Brody S. Circadian rhythms in Neurospora crassa: lipid deficiencies restore robust rhythmicity to null frequency and white-collar mutants. Proc Natl Acad Sci U S A. 2000 Jan 4;97(1):256–261. doi: 10.1073/pnas.97.1.256. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Lauter F. R., Russo V. E., Yanofsky C. Developmental and light regulation of eas, the structural gene for the rodlet protein of Neurospora. Genes Dev. 1992 Dec;6(12A):2373–2381. doi: 10.1101/gad.6.12a.2373. [DOI] [PubMed] [Google Scholar]
  20. Liu Y., Loros J., Dunlap J. C. Phosphorylation of the Neurospora clock protein FREQUENCY determines its degradation rate and strongly influences the period length of the circadian clock. Proc Natl Acad Sci U S A. 2000 Jan 4;97(1):234–239. doi: 10.1073/pnas.97.1.234. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Loros J. J., Denome S. A., Dunlap J. C. Molecular cloning of genes under control of the circadian clock in Neurospora. Science. 1989 Jan 20;243(4889):385–388. doi: 10.1126/science.2563175. [DOI] [PubMed] [Google Scholar]
  22. Loros J. J., Dunlap J. C. Neurospora crassa clock-controlled genes are regulated at the level of transcription. Mol Cell Biol. 1991 Jan;11(1):558–563. doi: 10.1128/mcb.11.1.558. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. McClung C. R., Fox B. A., Dunlap J. C. The Neurospora clock gene frequency shares a sequence element with the Drosophila clock gene period. Nature. 1989 Jun 15;339(6225):558–562. doi: 10.1038/339558a0. [DOI] [PubMed] [Google Scholar]
  24. Merrow M., Brunner M., Roenneberg T. Assignment of circadian function for the Neurospora clock gene frequency. Nature. 1999 Jun 10;399(6736):584–586. doi: 10.1038/21190. [DOI] [PubMed] [Google Scholar]
  25. Millar A. J., Carré I. A., Strayer C. A., Chua N. H., Kay S. A. Circadian clock mutants in Arabidopsis identified by luciferase imaging. Science. 1995 Feb 24;267(5201):1161–1163. doi: 10.1126/science.7855595. [DOI] [PubMed] [Google Scholar]
  26. Nowrousian Minou, Duffield Giles E., Loros Jennifer J., Dunlap Jay C. The frequency gene is required for temperature-dependent regulation of many clock-controlled genes in Neurospora crassa. Genetics. 2003 Jul;164(3):923–933. doi: 10.1093/genetics/164.3.923. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Reppert Steven M., Weaver David R. Coordination of circadian timing in mammals. Nature. 2002 Aug 29;418(6901):935–941. doi: 10.1038/nature00965. [DOI] [PubMed] [Google Scholar]
  28. Sargent M. L., Briggs W. R., Woodward D. O. Circadian nature of a rhythm expressed by an invertaseless strain of Neurospora crassa. Plant Physiol. 1966 Oct;41(8):1343–1349. doi: 10.1104/pp.41.8.1343. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Stadler D., Macleod H., Dillon D. Spontaneous mutation at the mtr locus of Neurospora: the spectrum of mutant types. Genetics. 1991 Sep;129(1):39–45. doi: 10.1093/genetics/129.1.39. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Zhu H., Nowrousian M., Kupfer D., Colot H. V., Berrocal-Tito G., Lai H., Bell-Pedersen D., Roe B. A., Loros J. J., Dunlap J. C. Analysis of expressed sequence tags from two starvation, time-of-day-specific libraries of Neurospora crassa reveals novel clock-controlled genes. Genetics. 2001 Mar;157(3):1057–1065. doi: 10.1093/genetics/157.3.1057. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES